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Abstract

We present on a new case of myelodysplastic syndrome characterized by array Comparative Genomic
Hybridization. This technique confirmed the monosomy 7, detected by conventional cytogenetics, and revealed also
a deletion on the short arm of chromosome 12. This deletion extends for about 14.8 Mb and breaks ETV6 gene.

12p deletion extents in hematological malignancies may vary, but the minimally deleted region almost invariably
contains ETV6, that is considered the main candidate tumor suppressor genes within the region for tumor
progression. It has been shown that levels of ETV6 were significantly decreased in cases with 12p13 deletions,
whereas expression of other genes in the deleted region, like BCL2L14, LRP6, DUSP16 and GPRC5D, did not show
any variation, independently of their copy number status. This observation strengthens the fact that ETV6 may play
a potential role in the tumorigenesis process. The role of ETV6 in our patient myelodysplastic syndrome is showed
by his clinical history and his poor prognosis.
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Introduction
Myelodysplastic syndromes (MDS) are a heterogeneous group of

clonal hematopoietic stem cell malignancies characterized by
peripheral blood cytopenias, one or more lineage dysplasia, and
ineffective hematopoiesis. Metaphase cytogenetics has become the
routine test in the management of MDS as well as in hematological
malignancies where the presence of specific chromosomal aberrations
can be diagnostic, or highly predictive of prognosis or responsiveness
to target therapeutics. Clonal cytogenetics abnormalities have been
observed in about 50% of de novo MDS and in more than 80% of
secondary MDS cases [1-4].

Karyotype analysis has technical limitations, mainly due to the
available metaphase spreads and to the chromosome resolution. These
factors result in the underestimation of the degree of chromosomal
changes. In the recent years, the advent of array CGH (Comparative
Genomic Hybridization) has given a great contribution to the
diagnostic tools available for MDS, overcoming some of the limitations
of the classic cytogenetic techniques. This method do not rely on cell
division, has superb resolution for unbalanced lesion and allows for
detection of copy number variation that can be related to the tumor
progression [1,5,6].

Here, we present a case of MDS where we were able to find a
chromosome 12 abnormality detected only by array CGH.

Material and Methods

Patient history
In October 2005, a 60-year-old male patient was admitted to our

hospital for nodal marginal zone non-Hodgkin’s lymphoma, stage IV
(bone marrow was infiltrated), diagnosed after biopsy of a 20-mm
inguinal lymph-node. At that time, conventional cytogenetics on bone
marrow was normal. Patient was firstly treated with 2-chloro-
deoxiadenosine for 6 cycles and subsequently, because of a poor
response, according to R-CHOP (rituximab, cyclophosphamide,
vincristine, prednisone) schedule. After further three months, our
patient showed again enlarged lymph-nodes in abdomen and neck,
thus he received R-GDP (rituximab, gemcitabine, cisplatin, and
dexamethasone). In February 2008, because of a relapse in the central
nervous system (CNS), he received high-dose methotrexate, intratecal
aracytin and temozolomide. This latest drug was repeated in February
2011 for a new evidence of a further disease progression in CNS, this
time followed also by encephalic radiotherapy. In August 2011, for
newly enlarged lymph-nodes in abdomen, he received R-
bendamustine, achieving a partial remission, without significant
hematological or extra-hematological toxicities. Nevertheless, in
November 2012, he presented with anemia (hemoglobin = 9.7 g/dL),
thrombocytopenia   (platelets  =  25 × 10  /L)   and   leukocytosis   with
monocytosis (monocytes = 2.8 × 10  /L).

The bone marrow showed an increased cellularity, with 25% of
monocytic precursors, 7% of CD34+, CD11b-, CD13+ blasts, reduced
erythroid and megakaryocytic lineage, with clear dysplastic features.
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Patient was then diagnosed as affected by chronic myelomonocytic
leukemia type 1.

Patient received epoietin and danazol, but he rapidly became
transfusion-dependent. On this bases, the CPSS risk score of our
patient was high [7].

For a further increase of leukocytes, patient received etoposide for
three months, but he died in November 2013 because of sepsis.

Genetic analysis
Standard karyotype was performed on metaphase spreads obtained

by unstimulated cultures of BM blood sample.

Array CGH was performed according to standard protocols.
Genomic DNA was extracted from 200 μL of bone marrow anti-
coagulated by EDTA. This DNA and a male reference DNA were
labeled differentially with Cyanine 3 and Cyanine 5, using standard
procedures. Microarray experiments were performed on 4x44K
microarrays (Agilent Technologies, Santa Clara, CA), that have ∼35 kb
average probe spatial resolution. Microarrays were scanned with an
Agilent scanner G256BA. Hybridization data analysis was carried out
with Agilent Technologies dedicated softwares. Search for Copy
Number Variation Regions (CNVRs) was performed using the
Database of Genomic Variants (http://projects.tcag.ca/variation/).

WT1 gene expression and mutations of ASXL1, TP53, EZH2, and
TET2 genes were evaluated according to standard procedures. DNA
was extracted from the bone marrow samples by the QIAamp DNA
Blood Mini Kit (Qiagen, Hilden, Germany). About 600 ng of DNA
were analysed for each patients by using a custom qBiomarker somatic
mutation PCR array (Qiagen, Hilden, Germany) for ASXL1, EZH2,
TET2, and TP53 gene. This method can detect as low as 1% somatic
mutations in the background of wild-type genomic DNA. Allele
specific amplification is achieved by Amplification Refractory
Mutation System (ARMS) technology, which is based on the
discrimination by Taq polymerase between a match and a mismatch at
the 3’ end of the PCR primer. The analysis of data was performed using
a pool of five healthy donors as control and calculating the relative
abundance of mutant DNA templates by the formula ΔCt sample = (Ct
mut – Ct ref) < ΔCt controls where the reference assay is designed on a
non-variable region of the same gene which carries the mutation.

Results
Standard cytogenetic analysis detected a monosomy of chromosome

7 in about 70% of the metaphases. WT1 gene expression was in the
normal range, and we did not find any mutations of ASXL1, TP53,
EZH2, and TET2 genes.

Array CGH confirmed the monosomy of chromosome 7 (mean
fluorescent ratio -0.66) and detected a chromosome 12p interstitial
deletion, from 12p13.2 to 12p11.23 (mean fluorescent ratio -0.68), not
visible at the karyotype analyzed by two expert cytogenetists. The
deletion extends for about 14.8 Mb, starting from 11,897,416 to
26,698,489 bp, and contains more than 55 annotated genes, according
to UCSC database (http://genome.ucsc.edu/). Interestingly, the 12p13.2
breakpoint falls into ETV6 gene, which results partially deleted.

The karyotype was given as arr[GRCh37]
7p22.3q36.3   (92532_158909679)             ×                   1 [0.7],
12p13.2p11.23 (11897416_26698489) ×1 [ 0.7] according to ISCN 2016
nomenclature.

Discussion
12p deletions are detected in a broad spectrum of hematological

malignancies in acute myeloid leukemia (AML) they are usually
associated with complex karyotypes, whereas in myelodysplastic
syndromes these anomalies are often seen along with monosomy 7
[8-11]. Rucker et al. showed that about half of the AML with complex
karyotype (CK-AML) presented 12p13 deletions, when analyzed by
high-resolution arrays [12]. Moreover, in a series of 125 patients with
secondary MDS, unbalanced translocations involving chromosome
12p were found in 8% of cases [4].

Deletion extents may vary, but the minimally deleted region almost
invariably contains ETV6, that is considered the main candidate tumor
suppressor genes within the region for tumor progression [13,14].
Other genes within the minimal deleted region like CDKN1B,
BCL2L14, LRP6, DUSP16 and GPRC5D may play an additional role in
tumorigenesis and leukemogenesis [11]. All these genes are deleted in
the case here presented; his deletion extends to band p11.23 where the
oncogene KRAS2 is harbored.

ETV6 (ets translocation variant gene 6) is a member of the ETS
transcription factor family, and putative tumor suppressor gene since it
induces G1 arrest and blocks Ras-induced transformation, promotes
apoptosis, and activates TP53 dependent pathways [13].

Alterations of ETV6, as a consequence of translocations, deletions,
or somatic mutations, has been detected in myeloid malignancies and
MDS with highly variable frequency; this variability mainly depends
on the characteristics of the study population and on the technique
used. Anyway, it can be assumed that at least 5% of MDS/AML have
ETV6 deletion [15,16]. This frequency has been shown to be much
higher in association with monosomy 7 [12,17,18]. Wall et al. tested
ETV6 deletion in a series of 38 patients with diagnosis of MDS/MPN
(myeloproliferative neoplasms) or AML with monosomy 7 [19]. 6 out
of 38 patients (16%) showed an ETV6 deletion, that, in 5/6 was
undetectable by conventional cytogenetic methods, as observed in our
case. The breakpoints were heterogeneous: deletions could be
complete, involving the entire ETV6 gene, or only partial, with the 5’ of
the gene retained. As it can be seen in Figure 1, in our patient ETV6
deletion is partial: the probes till to 11,847,532 bp resulted not deleted,
whereas the probes starting from 11,897,616 bp indicates a monoallelic
deletion (Figure 1).

Figure 1: Array CGH profile. Array CGH profile showing all the
chromosomes, with chromosome 7 partial monosomy and
chromosome 12p deletion highlighted (top left, red circles). Profile
of chromosome 12 is enlarged, showing the 12p deletion in detail
(top right). ETV6 gene is partially deleted, as shown by the
fluorescent ratios of the probes covering this gene (bottom).

The mean fluorescent ratio of the deletion (-0.66) is compatible with
a mosaic deletion, roughly involving about the 75% of the cells. This
percentage is overlapping with the one with monosomy 7, detected
both by standard karyotype and array CGH.
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It can be guessed that this partial deletion results in a decreased
expression of this gene [11]. These authors demonstrated that levels of
ETV6 were significantly decreased in cases with 12p13 deletions
encompassing the entire gene or at least the 3'UTR, like in the present
case, whereas expression of other genes in the deleted region, like
BCL2L14, LRP6, DUSP16 and GPRC5D, did not show any variation,
independently of their copy number status. This observation highlights
that expression of ETV6 is strictly regulated in the blood cells and
suggests a potential role for this gene in the tumorigenesis process. The
role of ETV6 in the clinical history of our patient is showed by the
poor prognosis both of lymphoma and of MDS.

Conclusion
Array CGH is a new diagnostic test to be performed along with

conventional karyotype in MDS, especially when chromosome quality
is poor. Discovering new cases with 12p deletions, often undetectable
by conventional karyotype, can be useful to establish if these deletions
may identify a MDS subset with a negative prognostic factor.

Future studies investigating clonal evolution should clarify whether
haploinsufficiency of ETV6 may play an early role in the process of
leukemic transformation by disordering key processes of
differentiation and proliferation and whether it also plays a critical role
in the induction of chromosomal instability finally resulting in the
development of -7 clones and/or clones with CK.
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