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Abstract

Simple averaged normal vector, Hermit polynomial, Cubic B-Spline curve and other technique are used to smooth 
surface for frictional contact problem between deformable bodies in context of large deformation. Mortar approach is 
combined with augmented Lagrange formulation to treat the contact constraints. A spline interpolation is also employed 
for the linearization of the kinematic contact constraints. Cubic B-Spline is applied at the boundary of contact element 
while maintaining a classical Lagrange interpolation at the interior. The quality of the contact pressure obtained with 
B-Spline is better than that achieved with a hall Lagrange discretization. The performance of the proposed framework
is illustrated with representative two dimensional numerical examples.
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Introduction
Usually for accurate contact problems one used to include 

finite element discretization applying the standard NTS (Node-To-
Segment) formulation [1] in the transmission of contact constraints. 
Using NTS method involve loosing accuracy of displacements 
and stresses in the contact area due to the fully nodal-wise contact 
constraints. To circumvent NTS purview, mortar method is initially 
used for unilateral small deformation contact problem [2]. It has been 
successfully extended to solve large deformation contact problems [3]. 
Mortar method is a discretization technique initially used in domain 
decomposition for non-matching grids. It is applied by connecting 
two different discretized surfaces using Lagrange multipliers. Then it 
is used to treat continuously contact problems [4,5]. The transmission 
of the contact constraints is performed by a weak projection of the 
displacement from one contacting body to the next using integrals 
defined in 1C  contact surface.

On the other hand, the contact strength calculations also depend 
on accurate and smoothed interactions that impact global as the local 
contact pressure and the tangential tractions description. Mortar 
approach is a method of contact interaction treatment through an exact 
evaluation of surface integrals contributing to the weak formulation. It will 
be combined with discreet satisfaction of contact constraints [6-13].

The unsmoothed finite elements (C0 continuity generally) are 
the most widely used discretization techniques for the calculation of 
contact problems. It has long been recognized that the unsmoothed 
discretization leads to convergence problems. It could result also high 
oscillation in the tangential effort for the frictional contact problems 
[14-19]. To overcome these issues, various techniques have been 
developed as Hermit, Bezier, B-Spline [20-23]. The mortar approach 
allows smooth contact constraints through generated in the weak 
formulation of the problem. In the literature, there are also some 
smoothing techniques applied directly on the contact surface [24-26].

Cubic B-Spline [27,28] is used to describe the contact surface and 
replace the C0 continuous Lagrange polynomials usually indented in 
classical finite element method. Linear Lagrange interpolation used 
in classical finite element method is insufficient to describe a curved 
surface unless the use of a finer element meshes which increase the 
problem size. The normal vector is not defined continuously which 
causes errors in the imposition of the kinematic contact conditions, 
and in the accuracy of the gap calculation as shown in Figure 1. 

The smoothing procedure operates only on the contact surface. An 
exact characterization of the initial geometry (or very close to) helps to 
obtain a smooth description which can then be combined with mortar 
approach. 

Mechanical Model 
Now we present a study of a two-dimensional large deformation 

contact problem with different formulations. Figure 2 illustrates two 
2D bodies β1 and β2 occupying their initial configuration ( )2

0Ω  and ( )2
0Ω

of 2 then ( )1Ωt
 and ( )2Ωt

 in the current configuration. 2 have a direct 
orthogonal reference ( )1 20, , e e . Note Γ1 and Γ2 are the borders of ( )2

0Ω
and ( )2

0Ω  in the reference configuration then γ 1 and γ 2 are the borders 
of ( )1Ωt  and ( )2Ωt

 in the current configuration.

At the initial configuration, a given point 0∈Ωi iX  maps to xi at the 
current configuration by: 

Gap

Figure 1: Contact surface and normal vector based on standard finite element 
interpolation. 
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The relationship that connects a point of the master surface X1 
in the reference configuration to its counterpart x1 in the present 
configuration after the application of a displacement u1 is given by:

x1 (X1, t)=X1+u1(X1, t)                 (1.4)

Similarly, for a point on the slave surface, the relation can be written:

x2 (X2, t)=X2+u2(X2,t)                 (1.5)

n1 is the outgoing normal vector of the surface 1γ c  at the point x1 
and n2 the normal vector outgoing of the surface 2γ c  (Figure 3).

The minimum distance between a point on the slave surface x2 and 
its closest counterpart belonging to the master surface x-1 is given by:

( )2 1 1.= −Ng x x n                     (1.6)

The gap must always be positive or zero to apply the non-
penetration between the two bodies in contact.

gN=(x2-x-1). n-1 ≥ 0                   (1.7)

The normal force representing a contact pressure is conventionally 
negative when the gap is zero. It vanishes when the gap becomes positive 
and the two bodies are no longer in contact. There is a complementary 
relationship between the normal force tN and the gap gN. These three 
relationships can be written as conditions Karush-Kuhn-Tucker:

gN ≥ 0, tN ≤ 0, gN tN=0                (1.8)

The relations in (1.8) are usually used for solving optimization 
problems. Traditionally, in mechanical contact problem such relations 
are called the conditions of Hertz-Signorini-Moreau. For a contact 
problem with friction [14-17] applying these conditions leads to a 
geometric expression as inequality:

[ ] 0 0 0
ˆ: . .

σ
σδ ρ δ δ

Ω Ω Γ
Ω ≥ Ω + Γ∫ ∫ ∫E S d b u d t u d              (1.9)

We treat the contact problem in the static approach by establishing 
the balance of contact interactions in a well-defined contact field γc. We 
calculate the reduced stresses in the reference configuration of a point 
of the current configuration by the first stress tensor Piola-Kirchhoff. 
The equilibrium equation is formulated in the reference configuration. 
By combining the balance with the displacement boundary conditions 
imposed on σΓ

i  and surface forces imposed on σΓ
i , we can define the 

following problem:

( )( ) ( ) ( ) ( )
0 0. 0ρ+ = Ωi i i iDiv F S b on

( ) ( ) ( )ˆ= Γi i i
uu u on

( ) ( ) ( )ˆ
σ= Γi i it t on                (1.10)

With F : Gradient transformation

S : Second Piola-Kirchhoff stress tensor

Ρ0 : Density in the reference configuration

b : Volume Force 

t : Surface Force 

The second stress tensor Piola-Kirchhoff is obtained by deformation 
of Green-Lagrange ( ) ( )( )1

2
= − Ι

ii TE F F using the Kirchhoff St. Venant 
material behaviors:

( ) ( ) ( ):=i i iS C E                (1.11)

With C(i) is the constitutive tensor.

( ) [ ] 2, : 0,= Ω × → �i i i i i
tx x X t with x T                  (1.1)

The boundary of each body is split into three separate parts, such 
as: 

( ) ( ) ( ) ( )
σΓ + Γ + Γ = Γi i i i

u c

( ) ( ) ( ) ( ) ( ) ( )
σ σΓ ∩Γ = Γ ∩Γ = Γ ∩Γ =∅i i i i i i

u c u c
                (1.2)

These three parts are defined as follows:
( )Γ i
u  is the part of Γ(i) in which displacements ˆ iu  are imposed.

( )ˆ it  is the part in which surface forces ( )ˆ it  are imposed.
( )Γ i
u  is the part in contact with another body.
( )Γ i
u , ( )

σΓ
i  and γ i

u  are transformed on γ i
u , γ i

c  and γ i
c  in the current 

configuration.

The resolution of a normal contact problem (frictionless) returns to 
the determination of the interaction between a point x1 on the contact 
boundary 1γ c  and the closest point x2 of 2γ c . This interaction results 
in a normal force of resistance to penetration of the two bodies, it is 
noted tN. The distance between these two points is commonly called 
normal gap and recorded gN. In a resolution of the problem by the finite 
element method, there are three approaches to the nature of points x1 
and x2:

- All pairs of points x1 and x2 are nodes meshes: it is the node to 
node approach (denoted in the following NTN).

- One of the two points corresponds to a mesh node: this approach 
is said node to segment (noted in the NTS continued).

- If the two points are any points of contact interface, it is in the 
case of a segment to segment approach (denoted in the following STS).

Note by‘d’ the distance between a master point x1 given on the 
surface 2γ c

 and a point x2 on the slave surface 2γ c
. This function is 

expressed by:
1 2= −d x x                (1.3)
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Figure 2: 2D contact problem and notations. 
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Figure 3: Normal vectors in the contact interface.
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The existence and uniqueness of the solution for a contact problem 
without friction in small displacement is shown in [17]. The work of the 
contact forces GC (u,δu, tc) contributes to the work of the internal forces 

( ) ( )δi
extG u and the external forces ( ) ( )δi

extG u to give the following global 
work expression where tc represents the contact force.

( ) ( ) ( ) ( ) ( )( ) ( )
2

int
1

, , , , , 0,δ δ δ δ
=

= + + =∑ i i
c ext C c

i
G u u t G u u G u G u u t  (1.12)

Which

( ) ( ) ( ) ( ) ( )
( )
0

2

int 0
1

, :δ δ
Ω

=

 = Ω ∑∫ i

i i i i

i
G u u E S d

( ) ( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( ){ }
0

2

0 0
1

ˆ. .
σ

σδ ρ δ δ
Ω Γ

=

= Ω − Γ∑ ∫ ∫i

i i i i i i i i
ext

i
G u b u d t u d

( ) ( ) ( ) ( )
( )

2

1
, , .δ δ

Γ
=

= Γ∑∫ i
c

i i i
C c c c

i
G u u t t u d            (1.13)

where u are the displacements and u their variations. 

The virtual work arising from contact constraints is computed at 
the slave surface ( )1Γc . The expression of Gc depends on the choice of 
used formulation. There are different techniques in the literature to 
force the contact conditions [29,30]. For the frictional contact problem, 
the sliding conditions lead to the definition of a tangential component 
in the contact interface tt.

In practice only a part of the candidate contact surfaces is active. 
This portion of the surface is the zone in which the normal gap is 
zero. Cancelling it will trigger the calculation of the contact force and 
the new positions of the bodies in contact. The rest of the interface is 
presented as an inactive contact region that can become active. The 
determination of the status of the active contact areas is performed by 
using an algorithm known as the Active Set Strategy whose application 
is detailed in [24,31-34]. We suppose that we know at this stage active 
area of the contact, and then we can apply the contact constraints to 
the problem.

Discretization of the Contact Interface
The first calculation of an analytical solution of a contact problem 

was made by Hertz in [34] between a sphere and an infinite half space. 
Johnson [35] extended the analytical solution with solids having other 
geometries. The analytical resolution of a contact problem is limited to 
simple geometries that can be described analytically. In order to treat a 
contact problem between complex geometry bodies, an approximation 
of the solution using the finite element method was developed [17, 36-
38]. In these early attempts to modelling contact problems between 
deformable body by the finite element method, applications were 
limited to the case of small deformations and small displacements 
hence the use of linear theories. In this case, the mesh sizes used in 
the body interface were compliant. The discretization proposed by 
Francavilla [39] prohibits any slipping between the two bodies in 
contact. The first application of this method to a contact problem with 
large displacement is developed by Hughes [40]. The application of the 
contact conditions is bye the node to node method detailed by Kikuchi 
and Oden [17]. The node to node method (NTN) may be considered as 
the simplest numerical method for treating the contact.

The mathematical resolution of the NTN method is to just 
adding forces to the node that compensate the contact force. Its 
implementation requires an algorithm that handles the activation or 
deactivation of the nodal forces of contact. The discretization mesh of 
two bodies in contact must be homogenous for this method to can use 
it. This method is then restricted to conforming meshes for a contact 

problem in small deformation and small relative movements in the 
interface.

The normal gap gN between the two bodies in contact (Figure 
4) is calculated by projection. The gap always has a positive value to 
avoid the overlap of the two bodies (condition of non-penetration). In 
general case, the nodes are distributed in an arbitrary manner on the 
contact interface view that the two bodies are not necessarily mesh with 
the same mesh sizes (Figure 5). And if that is the case, this approach is 
limited to cases of small deformation in the elastic range.

A segment node approach (NTS) was developed by Simo [41] 
to discretize the improper meshing contact interface (Figure 5). In 
the NTS method, the conditions of contact and friction are applied 
between: on the one hand a node of the contact surface of the first body 
and on the other side a segment belonging to the other body. Initially, 
this method was applied to the two-dimensional contact problems with 
elastic constitutive law in large displacement. An extension to the case 
of nonlinear constitutive laws like the hyper-elastic model and elastic-
plastic law was then presented [18,42-45]. This discretization technique 
did not permit the satisfaction of patch-test [46]. The NTS method has 
a difficulty to well transmit the contact forces from one body to another 
for a perfectly flat interface as shown in [47].

The patch test is presented by a rectangular block of 4 UL (length 
unit) lengths and 2 UL in width support on its lower edge. Another 
rectangular block, which the dimension is 2 UL by 1 UL, is based on the 
first, as shown in Figure 6. The two blocks are subjected to a uniform 
pressure of 1 F/UL² on their upper surfaces. A neo-Hooke behaviors 
is considered for the two blocks which the Young modulus is E=1000 
F/UL2 and Poisson coefficient correspond to v=0.3. The lower block 
is discretized with 16 x 8 elements when the top block is discretized 
with 20 x 4 elements. The analytical solution of this problem has been 
discussed in [3], the value of the expected vertical stress is constant over 
all of the mesh elements is σyy=-1F/UL².

Material characteristics:

E=1000 F/UL2

v=0.3 

Loading:

pN=1 F/UL2

Analytical solution:

 

2Ω

1Ω

Ng

Figure 4: Contact interface between two homogeneous meshes: NTN 
discretization.

 

2Ω

1Ω

Figure 5: Contact interfaces between two non-conforming meshes.
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σ vertical=-1 F/UL2

The NTS method remains the most used in a large range of 
industrial computer codes. In the literature, there are algorithms for 
the NTS approach using double pass [48] for solving the problem of the 
patch test. This means that at each problem increment is solved twice: 
on the first stage, one affects the choice of master and slave surfaces and 
on the second stage masters and slave’s surfaces are exchanged. This 
technique is limited to the case of linear interpolation elements and 
presents convergence problems for higher order elements for which 
the compatibility conditions said (Inf-Sup) are not satisfied. To reduce 
these problems of convergence without excessively penalizing the 
computation time, we find in the literature using the local refinement 
of the mesh in the contact area [49]. A detailed report on the patch test 
with the NTS discretization can be found in [50], where a new approach 
combining linear and quadratic shape functions is also available.

In the NTS method, we also need to define a master surface and a 
slave surface. The choice of the slave surface among the two surfaces in 
the interface is theoretically arbitrary. In practice, the slave surface is 
associated with the finer mesh or the least rigid body. The minimum 
distance (commonly known normal gap) which separates the two 

bodies in contact is calculated by orthogonal projection of all the nodes 
of the slave surface on the master surface (Figure 7). The conditions of 
non-penetration for the NTS approach is as the incapacity of the slave 
node to enter the master segment associated after projection.

The segment to segment method (STS) been proposed first by Simo 
for the case of two-dimensional contact problem. This first approach 
comes down to the use of an intermediate contact surface that occurs 
naturally from the discretization of the contact interface in contact 
segments (Figure 8). Recently this discretization has been generalized 
effectively to contact problems in three dimensions. This technique 
of discretization was coupled with the approach of mortar elements 
inspired by the domain decomposition method [50,51]. Discretizing 
with mortar approach, part of the STS method family, is stable and 
passes the patch test but its implementation is difficult and requires a 
lot of technical expertise. This technique has been successfully applied 
for normal contact problems [3,8,9] and for contact problems with 
friction [2,11,13,53,54-57].

The mortar method is initially a technique used for solving 
decomposition problems of non-conforming domains [57,58]. It has 
been adapted to modeling unilateral contact problem without friction 
or between different bodies [4,59]. This technique is well suited to the 
application of the contact conditions in a discrete system consisting 
of a non-conforming mesh in the interface. It is based on the use of 
Lagrange multipliers representing the contact force resulting nodes 
[7]. An intermediate surface, as a reference surface for the Lagrange 
multipliers, is exploited for the first uses of this technique [2]. In this 
paper, the use of this method is generalized to be applied for solving 
a contact problem with friction in large displacement and sliding. 
The bearing surface of the Lagrange multipliers can be one of the two 
contact surfaces (master or slave) [5,60]. A modified dual method 
for the case of contact between geometrically complex surfaces is 
detailed by Flemiscli [61] wherein the two contact surfaces succeed 
to be a reference surface for the Lagrange multipliers. An algorithm 
close to NTS double-pass method is deployed. A generalization of this 
technique was developed by Popp A [62] to a 3D contact problem.

Contact and friction constrains are applied in a weak way and 
the discretization should check Brezzi-Babuska conditions [63-65]. 
The algorithmic method and its theoretical expression are detailed 
in [24,30,66]. Non-penetration conditions will be applied on the 
integration points of the slave’s segments and not on the slave nodes as 
for the NTS approach (Figure 9).

In the literature, smoothing techniques were always applied in 
a local way. The idea in this work is to combine the local smoothing 
of the geometry description with an overall smoothing of the contact 
constraints application. The mortar approach is an accurate assessment 
of the integrals in the interface to meet the contact constraints. A 
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Figure 6: Patch-test contact problem.
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Figure 8: Discretization of the contact interface using contact segments [66].
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Figure 9: Matching and projection for mortar method (3 integration point for 
each slave segment).
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contact problem could be over-conditioned if it is combined with other 
constraints such as thermo-mechanical problem [67,68] or the dynamic 
contact problem [11]. In this case, the use of the mortar method proves 
very important to solve a contact problem because it can smooth 
different constraints (contact, friction thermal …) in the interface 
under an integral form [7,9,10]. If we add to the mortar method for 
the contact constraints enforcement a direct smoothing technique 
applied in the interface, as in [17,24,25], we can guarantee a superior 
robustness in the resolution algorithm. An ‘exact’ characterization (or 
very close) to the geometry of the initial analysis helps in the obtaining 
of a smooth description which can be then combined with the mortar 
approach for the resolution of a contact problem in finite deformation.

Mortar Approach Description 
The mortar approach will be the discretization method of the 

contact interface adopted for this work. In the contact interface, the 
master surface is designated 1 and the slave surface as Γ2. In the mortar 
approach, we use the terms mortar surface Γm (master) and non-mortar 
surface Γnm (slave).

The mortar method allows coupling subdomains from the contact 
surfaces of the two body defined by two independent meshes. In this 
approach, the term ‘segments’ means the elements of the discretized 
contact surfaces (Figure 10). The discretized mortar surface (same of 
the non-mortar) is the union of all the segments that comprise it:

1 1= =

Γ ≈ Γ Γ ≈ Γ j i

N M
nm nm m m

j i

             (2.1)

Exhibitor’s ’nm’ and ’m’ indicate respectively non-mortar and 
mortar. The contact interface has respectively (M) and (N) and non-
mortar and mortar segments. Since the meshes of two bodies in contact 
are not conforming, the two surfaces Γnm and Γm are not identical. For 
the rest, the non-mortar surface will serve as integration support for the 
calculation of different expressions (Γc=Γnm), variables ξ and ζ designate 
respectively the natural coordinated in the mortar and the non-
mortar segment. With the finite element method, the displacement is 
discretized through shape functions. One was limited in this study to 
the use of a linear interpolation of the displacement field on the border. 
The shape functions are given by:

( )1 1ζ ζ= −nmN   ( )2 ζ ζ=nmN

( )2 ξ ξ=mN    ( )2 ξ ξ=mN             (2.2)

The displacement u and the position of a point of the contact 
interface X may be written:

On a mortar segment Γm :  ( ) ( )
2

1
ζ ζ

=

= ∑m m m
i i

i
u N u

( ) ( )
2

1
ζ ζ

=

= ∑m m m
i i

i
X N X

On a non-mortar segment Γnm  : ( ) ( )
2

1
ζ ζ

=

= ∑nm nm nm
i i

i
u N u

( ) ( )
2

1
ζ ζ

=

= ∑nm nm nm
i i

i
X N X                               (2.3)

The contribution of the contact forces to the global virtual work 
can be expressed as a function of different variables, depending on the 
formulation: The normal gap gN, the tangent gap gT, normal Lagrange 
multiplier λN, tangent Lagrange multiplier λT and respectively their 
variationsδ Ng ,δλN

,δλN  andδλT , and as well as the normal contact 
pressure pN. This function is the sum of cN, contribution of normal 
forces of contact, and cT for the tangential forces.

( ) ( ), , , , , , ,λ δλ δ λ δλ δ
Γ Γ

= Γ + Γ∫ ∫
c c

c N N N N N T T T T T NG c g g d c g g p d         (2.4)

Regardless of the choice of the formulation, the contact problem 
requires solving a system of nonlinear equations. After linearization of 
expressions cN and cT to establish the residual vector and the tangent 
matrix, we use the Newton-Raphson algorithm to solve the final 
problem. Other nonlinearities (material and/or geometric) may be 
added to the nonlinearity of the contact. Detail in the following the 
expressions of the tangent matrixes and residual vectors for different 
formulations. By replacing the contact surface by its discretization (2.1) 
we can write:

( ) ( )

( ) ( )
1

, , , , , , ,

, , , , , , ,

λ δλ δ λ δλ δ

λ δλ δ λ δλ δ

Γ Γ

= Γ Γ

= Γ + Γ

 
 = Γ + Γ
  

∫ ∫

∫ ∫

c c

s s
c c

c N N N N N T T T T T N

N

N N N N N T T T T T N
s

G c g g d c g g p d

c g g d c g g p d
      (2.5)

In this expression we find two terms to detail: cN and cT. In the 
case of a contact problem without friction, only the first term has a 
meaning. The next section is dedicated to the quantification of that 
term in various formulations. An extension to the case of contact with 
friction will be detailed in the next section.

To solve a contact problem, we have to define a relationship between 
the two surfaces of the contact interface Γnm and Γm. This relationship 
allows associating any non-mortar point the closest mortar point. This 
relationship requires solving a minimization problem of the distance 
between the two points. We note xm (Xm

,t) and xnm (Xnm
,t) the positions 

of the mortar and non-mortar points in the current configuration.

We introduced a function, noted d, that describes the distance 
between a slave point (non-mortar) nmx  given on the surface γnm and 
a point xm=x-m (ξ, t) on the mortar surface with designating ξ the natural 
coordinate on the mortar surface (Figure 11). This relationship is given by:

( ),ξ= −nm md x x t                (2.6)

The relationship that connects a point on the mortar surface 
Xm in the reference configuration to its counterpart in the current 
configuration after the application of a displacement um is given by:

Xm(Xm, t)=Xm + um (Xm, t)                                                                          (2.7)

It is the same for a point of non-mortar surface:
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Figure 10: Discretization of the contact problem by the finite element method.
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( ) ( ), ,= +nm nm nm nm nmx X t X u X t                 (2.8)

The distance between the two points xnm and x-m should be minimal, 
this condition is ensured by verifying the following equation:

( ), 0
ξ ξ

ξ
ξ =

=
d d t

d
                   (2.9)

ξ  is the natural coordinate value on the mortar segment which 
checks (2.9). The line through the point xnm and its projection x-m gives 
us the direction of the normal vector of the mortar segment noted nm 
and used for projection (Figure 12). The unit normal vector can be 
therefore defined by:

ξ
=m mda x

d                                   (2.10)

The tangent vector to the mortar surface on the point with the 
coordinate ξ is:

ξ
=m mda x

d
                  (2.11)

The value of the natural coordinate of the point is calculated from 
the orthogonality relation between normal and tangent vectors:

nm. a-m=0                 (2.12)

The minimum distance in the normal direction (normal gap) 
between the two bodies in contact is given by the expression:

gN=(xnm-x-m). n-m                 (2.13)

The gap is updated during the movement of the two bodies and its 
value always indicates the minimum distance between a non-mortar 
point xnm and its mortar counterpart x-m. If the value is zero, the two 
bodies are in contact. If this value becomes negative then the condition 
of non-penetration is violated (Figure 13).

By canceling, the gap gN triggers the resolution of the contract. For 
a frictionless contact problem, a contact pressure tN will be exerted at 
the interface of two bodies. The gap and pressure are the unknowns of 
the problem.

The resulting contact force ct  on the surface Γc has two components: 
a component normal to the contact surface and noted 

tct  and another 
tangent to this surface and noted

tct .

= +
n tc c ct t t                   (2.14)

The bar above the force vectors indicates that it is in the current 
configuration. To resolve the problem, we have to write the equation 
balance and the contact constraints in a weak form.

The contribution of the contact forces will be calculated on each 
non-mortar integration point. The amount found will be reduced to 
non-mortar nodes. All contributions calculated on the non-mortar 
nodes will be used to establish the elementary matrix.

The balance of forces on the contact interface γc gives:

. .Γ = − Γnm nm m m
c ct d t d                  (2.15)

The virtual work of the contact forces is described by:

( ) ( ) ( ) ( )
( )

2

1
, , .δ δ

Γ
=

= Γ∑∫ i
c

i i i
C c c c

i
G u u t t u d                (2.16)

Using equality (2.16), contact virtual work on the slave contact 
surface is written:

( ) ( ). δ δ
Γ

 = − − Γ ∫ nm

nm nm m nm
C cG t u X u X d               (2.17)

For frictionless contact, (2.5) will be reduces to the normal 
components and is written:

.λ δ
Γ

= Γ∫ nm

nm
c N NG g d                 (2.18)

Formulation of a Normal Contact Problem
Solving the problem by the Newton-Raphson method requires the 

linearization of cN with respect to both contact variables λN and gN then 
their variations δλN andδ Ng .

( ) ( )
1

, , , , , ,λ δλ δ λ δλ δ
=Γ Γ

 
 = Γ = Γ
  

∫ ∫
s

c c

N

c N N N N N N N N N N
s

G c g g d c g g d (2.19)

The linearization of the function cN can be written as follows:

λ δ δλ
λ δ δλ
∂ ∂ ∂ ∂

∆ = ∆ + ∆ + ∆ + ∆ +
∂ ∂ ∂ ∂

N N N N
N N N N N

N N N N

c c c cc g g
g g

        (2.20)

Formulation of a Contact Problem with Friction
The contribution of the contact efforts to the global virtual work is 

given in (2.4) and by using the description of the contact interface in 
(2.5). To solve a frictional contact problem (Figure 14), the expressions 
of cN and of cT are to linearize according to the variables of the chosen 
contact formulation [55,56].

The expression of the contribution of the normal contact cN was 
detailed in the previous section. It remains now to give the expression 
of cT. 

The expression of the virtual work of in the contact can generally 
be written as follows:

δ
Γ

= Γ∫ t g
s

c

c cG d               (2.20) 

Knowing that the contact effort tc is the sum of two vectors of 
normal and tangent efforts as follows:

= +t t t
N Tc c c                  (2.21)

And

g=gN nm + gTam                   (2.22)

The vector g has a normal component (2.23) and another one 
tangential (2.24) as shown in the Figure 2.

With gN=g. nm                (2.23)
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Figure 12: Tangent vector and normal vector for a mortar point.
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Figure 13: Non-checking of the interpenetration conditions. 
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And .= g
m

T m

ag
a

                              (2.24)

For frictional contact problem (Figure 15), we can have two 
possible situations: stick contact or slip contact. To distinguish these 
two statuses, we use the law of Coulomb for the friction and we evaluate 
the function fs defined by:

µ= −t
T Ns c cf t

                   (2.25)

Knowing that t
Tc  is the normal contact effort and  is the Coulomb 

friction coefficient, it remains to determine the effort vector of tangent 
contact t

Tc  to evaluate the function (2.25). t
Tc  Is obtained by the 

projection of the global contact vector tc on the tangent plan:

{ } { }( )2

1
= ⊗t t

T

m m
c cm

a a
a

           (2.26)

The sliding function (2.25) can be now calculated and the status 
of the tangent contact will be defined according to the sign of this 
function as follows:

0

0

µ

µ

 − ≥


− <

t

t
T N

T N

c c

s

c c

t slip
f

t stick
                               (2.27)

The presence of the friction adds variables to the contact problem 

but also the numerical instabilities to the resolution. This instability 
arises from the passage of a contact point in the interface from a stick 
status to a sliding one or the opposite. This passage results a numerical 
instability which requires a specific treatment to reduce its influence 
on the convergence quality of the calculation. One adopt the Moving 
Friction Cone MFC) applied with the law of Coulomb to solve a contact 
problem with friction as for the two dimensional geometry by Opara 
[69] and for three dimensional problem in [19]. When the tangential 
forces overtake a certain limit, both surfaces in contact will not be any 
more attached but we notice a relative displacement between them. 
This relative displacement represents the sliding which is described by 
the Coulomb law as follows:

,

,

µ µ= >t t
T N T N

T t
c c c c

T t

g
t si t

g
             (2.28)

,T tg is the speed of sliding is. The coefficient of Coulomb µ is 
maintained constant during the contact between both surfaces. To 
estimate the status of an integration point on a non-mortar segment 
already in contact with a mortar segment, it is necessary to calculate the 
sliding function (2.25) with the natural coordinate ξ of the point. In the 
case of a stick contact, the amplitude of the tangent effort µ

Nct  is lower 
on the limit of the normal effort µ

Nct  evaluated by the Coulomb law. 
By applying the friction cone approach, every non-mortar integration 
point is inside a cone as shown in the (Figure 16).

If integration point in the non-mortar segment between the time 
step tn and tn+1 shows a relative displacement in the tangential direction 
to the associated mortar segment (on which is made the projection for 
the load step tn, the position ξn is going to change another one ξn+1. In 
the case of a frictionless contact, the update of the position ξn is directly 
made, but for the frictional contact it is necessary to verify some 
conditions to change its value.

If the contact effort obtained from the observed displacement is 
inside the friction cone, the tangent effort is lower to the limit µ

Nct
, the tangent displacement is not sufficient to bring out the non-
mortar integration point of the cone, thus there will be no updating 
of the projection position ξn and the vector 1+

st
ng  remains invariant 

with ξn+1=ξn. If the function fs are positive, we can conclude that the 
tangential effort tT is upper to the normal adhesion µ

Nct . The vector 
1+

st
ng  will be updated and the natural coordinate after projection will be 

updated and will take then the new value ξn+1 (Figure 17).

The expression of the virtual work of the contact (2.20) depends 
on the choice of the formulation, we shall detail, in what follows, this 
expression by using first the penalty method.

Smoothing Techniques 
Most of the discretization techniques of the finite element method 

used for the resolution of a contact problem is of continuity C0. A not 
smoothed discretization often leads to convergence problems either to 
highly oscillating contact interactions in particular for the tangential 
effort for a frictional contact problem. To limit some of these unwanted 
observations, different smoothing techniques of the contact interface 
for a two-dimensional problem were developed.

Among these techniques, we can quote the Hermite polynomials 
as in [22], [25] and Foley, [70], interpolation of cubic Bernstein in the 
shape of Bezier curve by Pietrzak [71] and [21] either cubic Splines 
as by Al-Dojayli [72] and [23]. In these last two works, splines are 
used locally which returns finally to the use of the Bézier curves. For 
the smoothing of the contact areas in the case of a 3D problem we 
find in the literature the use of Gregory’s patches as in [53]. All the 
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Figure 14: Frictional contact of two bodies between two load-steps.
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quoted works used the NTS approach for the application of the contact 
constraints.

In the literature, the term smoothing was often directly connected 
to the description of the geometry, and in particular to the surface 
normal vector. Indeed, the smoothing can be global for writing with 
a high order of continuity, as he can be local by acting on the terms of 
contact interactions as the normal pressure and the tangential effort.

For a contact problem, the smoothing is only applied to the contact 
zone to avoid any overload of calculation. By deleting the jumps of 
normal led by the polygonal description of the skin, the smoothing of 
the interface allows to improve the estimation of the contact efforts. 
For of large deformation problems, in spite of the smoothing of the 
geometry, some oscillation can persist because of the strong interactions 
between discretized surfaces [73].

In resolution phase of a contact problem, we notice the influence 
of the formulation chosen on the quality of the results and on the 
speed of convergence. Although the use of the augmented Lagrange 
method allows to stabilize the calculation and to obtain coherent 
results, she remains sometimes insufficient especially in the case of 
large deformation problems. Two neighboring not collinear segments 
after deformation, present a discontinuity of the tangent vector. The 
expression of the tangent matrix KT and the tangent effort tT for a 
frictional contact depends on the mortar surface tangent vector am. A 
discontinuity of this last pulled directly a problem in the calculation of 
these two terms. The normal vector of the mortar surface nm is directly 
connected to the tangent vector:

3

3

×
=

×





m
m

m

e an
e a

                 (3.1)

A discontinuity problem in the tangent vector leads automatically a 
problem of the same order for the normal vector. The normal vector of 
the mortar surface is used for the calculation of the gap. A discontinuity 
of this vector wills results problems for the existence and the uniqueness 
of the projection, (Figure 18). The proposed solution to this problem is 
to add a smoothing method to the mortar approach. The smoothing is 
proposed with various techniques.

Method of Averaged Normal 
This method, widely used in the literature, is implemented under 

various variants in numerical codes. In certain works, such as [33], we 
calculate the average of the normal vector for every node from both 
normal vectors of the neighboring segments as follows:

( )1

1

+

+

+
=

+


m m
i im

i m m
i i

n n
n

n n
                   (3.2)

The configuration of the averaged normal vector is as given in the 
following Figure 19:

In the paper [54], the smoothed normal vector is averaged from the 
normal vectors of both neighboring segments weighted by the size of 
these two last ones as the following formula shows:

( )1 1

1 1

0.5 + +

+ +

+
=

+


m m m m
i i i im

i m m m m
i i i i

l n l n
n

l n l n
              (3.3)

The application of this method is detailed in the following (Figure 20):

The used technique in this work is the one employee in [11]. We 
calculate the averaged tangent vector by:

( )1

1

0.5 +

+

+
=

+


m m
i im

i m m
i i

a a
a

a a
                               (3.4)

Then we apply the relation (3.1) to obtain the averaged normal 
vector (Figure 21):

In the resolution of the contact problem, the calculation of the 
normal gap gN will be according to the averaged normal vector mn  
and respectively the tangent gap gT for a frictional problem will be 
calculated using the averaged tangent vector ma .

To conclude, this technique avoids the jump in the normal and 
tangent direction near nodes. The evolution of normal in the segment 
remains linear and the contact surface maintains a C0 continuity order. 
For a projection close to node (the value of the natural coordinate ˆmn  
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Figure 18: Normal multiple on node.
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Figure 20: Averaged normal vector balanced with the elements length. 
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Figure 21: Averaged normal vector from averaged tangent vector.
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very close to 0 or 1), we notice an improvement on the error of the 
gap calculation compared with a projection without averaged vector. If 
the direction of the averaged vector is distant from that of the original 
vector, a geometry offset of the meshing will be built (Figure 22). 
Material will be added or subtracted from the body on which these 
normal are defined. It can slightly perturb the mass conservation of the 
system. This phenomenon restricts the application of this technique for 
the problems in large deformation.

Hermit Cubic Function 
In this section, we propose a smoothing of continuity C1 in 

the contact interface of a two-dimensional mortar problem. Let 
us consider linear elements with a Lagrange interpolation for the 
geometry discretization of bodies in contact and a description by 
Hermit polynomials for the border (Figure 23).

The cubic Hermit polynomials are only used for the description 
of the contact area [74]. The calculation of the minimal gap which 
separates both bodies will be assured by a projection using a new 
smoothed normal vector noted ˆmn . The latter is normal to mortar the 
surface, for that reason we limited the smoothing at only this surface 
only (non-mortar surface is not smoothed) (Figure 24). To find the 
expression of the normal vector, it is necessary to calculate at first the 
smoothed tangent vector:

( ) ( )ˆ
ˆ

ξ
ξ

ξ
∂

=
∂

m
m x

a ,                 (3.5)

then we apply the relation (3.1). It remains to find a detailed 
expression of a mortar point ˆmx  on the new curve defined by the 
Hermit polynomials according to its natural coordinate ξε[0,1] This 
expression is given by:

( ) ( ) ( ) ( ) ( )1 1 3 2 1, 4 ,ˆ ξ ξξ ξ ξ ξ ξ− −= + + +m m m m m m m m m
m m m mx H x H x H x H x  (3.6)

With { }1,2, ,4= m
iH i  are the Hermit polynomials. They are 

defined as follows:

( ) 2 3
2 2ξ ξ ξ ξ= − +mH , 

( ) 2 3
2 2ξ ξ ξ ξ= − +mH , 

( ) 2 3
3 3 2ξ ξ ξ= −mH ,

( ) 2 3
4 ξ ξ ξ= − +mH                     (3.7)

By applying (3.5), the equation (3.7) can be rewritten as follows:

( ) ( ) ( ) ( ) ( )1 1 3 2 1 4ˆ ξ ξ ξ ξ ξ− −= + + + m m m m m m m m m
m m m mx H x H x H a H a  (3.8)

With the technique of the averaged vector detailed in the 
previous section, we manage to smooth the pressure of contact in the 
neighborhood of nodes but the evolution of normal vector remains 
linear inside the segment. In the expression (3.8), we used the averaged 
tangent vectors ma obtained in (3.4).

In the contact interface, an integration point of the non-mortar 
surface xnm (ζ) is associated with its counterpart in the mortar surface 
x-m (ξ)by a projection. The vector of the gap

( )ξ= −nm mg x x                     (3.9)

must be collinear to the smoothed normal vector ˆmn  (Figure 25). It is 
necessary to look for the value of the natural coordinate ξ which verifies 
this condition:

( ) ( )ˆ 0ξ ξ∧ =
 

m nm mx x n                   (3.10)

By applying the expression (3.8) in (3.5), the smoothed tangent 
vector ˆma can be rewritten as follows:

( ) 1, 1 3, 2, 1 4,ˆ ξ ξ ξ ξξ − −= + + + m m m m m m m m m
m m m ma H x H x H a H a             (3.11)

By applying (3.11) in (3.1), we can obtain the expression of the 
smoothed normal vector ˆmn as follows:

1
1, 1 2, 3, 1 4,

1
1, 1 3, 2, 1 4,

ˆ

ˆ ˆ
0 0

ξ ξ ξ ξ

ξ ξ ξ ξ

+
− −

+
− −

 − − − − 
    = = + + +   

   
    

Y Y Y Y

X X X X

m m m m m m m mm
m m m mX

m m m m m m m m m m
Y m m m m

H x H x H a H an
n n H x H x H a H a (3.12)

By using the expression of the gap (3.9), the condition of projection 
(3.10) can be rewritten:

( ) ( )ˆ ˆ 0− − − =nm m m nm m m
X X Y Y Y Xx x n x x n                                    (3.13)

With the expressions (3.8) and (3.12), we can rewrite (3.13) as 
follows:

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

1 1 3 2 1 4

1
1, 1 3, 2, 1 4,

1 1 3 2 1 4

1
1, 1 3, 2, 1 4, 0

ξ ξ ξ ξ

ξ ξ ξ ξ

ξ ξ ξ ξ

ξ ξ ξ ξ

− −

+
− −

− −

+
− −

 − + + + 

 + + + 

 − − + + + 

 − − − − = 

X X X X

X X X X

Y Y Y Y

Y Y Y Y

nm m m m m m m m m
X m m m m

m m m m m m m m
m m m m

nm m m m m m m m m
Y m m m m

m m m m m m m m
m m m m

x H x H x H a H a

H x H x H a H a

x H x H x H a H a

H x H x H a H a

(3.14)

The position of an integration point on the mortar surface xm (ξ) is 
a cubic polynomial according toξ. The normal vector, and by using the 
expressions (3.1) and (3.5), it will be defined by a quadratic polynomial. 
The projection in (3.14) can be then described by a polynomial of order 
five as follows:

( ) 5 4 3 2 5
1 2 3 4 5 6ξ α ξ α ξ α ξ α ξ α ξ αΡ = + + + + +               (3.15)

After the determination of the expressions of the coefficients αi, 
Newton’s iterations will be essential for the calculation ofξ.

In [22] and [ 25], we find that the use of the Hermit polynomials 
for the smoothing of the contact areas improves considerably the 
convergence and the robustness of the solution of a contact problem 
treated with NTS method. This improvement is less remarkable with 
the method mortar in which the contact constraints are applied in 
a low way and the contact efforts are transmitted on all the contact 
area and not point by point. The used integral in the mortar method 
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Figure 24: Projection on a smoothed curve with cubic Hermit polynomials.
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produces a certain regularity of the contact pressure. That’s why the 
low contribution on the regularity by the smoothing with Hermit 
polynomial compared to the NTS method.

The use of the Hermit polynomials for the smoothing of the mortar 
surface allows reducing the error on the calculation of the minimal gap 
(Figure 26) and consequently the global error. The reduction of the 
error on the gap was the subject of research for several works seen its 
big influence on the solution of the system. We find in the literature 
as in [9], [33] and [37] the use of quadratic elements with the mortar 
approach to decrease the error in the calculation of the gap.

In our case, and with linear elements, the smoothing of the contact 
area with the Hermite polynomials improves the description of the 
contact interface. The function which describes the evolution on this 
surface is cubic only inside segments. Thus the mortar surface will be 
defined as a continuation of cubic curves. Although this technique 
gives to the surface a continuity of order C1, its resolution algorithm 
is penalized by Newton’s additional iterations necessary for the 
projection.

Cubic B-Spline 
In this section all of the contact area is parametrized by cubic 

B-Spline by using a global description of all the segments. With this 
technique, the projection of non-mortar points on mortar segments will 
be described by a unique set of parameters. For that reason, a structured 
discretization method must be used to reconstruct the mortar surface. 
In [27], [28] and Piegl L [74] the B-Spline was used initially for the 
geometrical design and not to improve the mechanical analysis. This 
sub-chapter includes a methodology which transforms the structured 
surfaces interpolated with linear finite element in B-Spline curves. 
We keep a linear Lagrange interpolation for the inside of master body 
elements. For the border, all the segments will be transformed into a 
single cubic B-Spline curve (Figure 27).

The discontinuity in the evolution of the normal vector raises 
problems in the precision of the gap calculation which influence 
directly the convergence. It presents a supplementary problem to 
reach a good continuity in the mortar surface which is added to the 
instabilities in slipping.

Several algorithms in the literature describe the interpolation 
of a set of points and tangents in a B-Spline curve with a prescribed 
continuity order (normally higher than C1). We pick up the algorithms 
developed in [27] and [74] and we replace the set of points by all the 
nodes of the mortar surface (Figure 28).

The mortar surface node m
iN , i=0,…,n,, are going to be interpolated 

with a cubic B-Spline curve. We attribute to each of these nodes 
a parameter noted ui∈ [0,1]. A knots vector, noted U and with a 
size m=n+2p, contains all the parameters ui of all the nodes to be 
interpolated. P is the order of B-Spline which is equal to 3 for cubic 
B-Spline. To define U we have:

u0=…=u3=0, um-3=…=um=1 

2

3
1 1, , 3
3

+

+
=

= = −∑ 
k

k j
j k

u u k n              (3.16)

With

1
1 1, , 1−
−

−
= + = −

m m
j j

j j

N N
u u j n

r
              (3.17)

in which r is the sum of the length of all mortar segments:

1
1

−
=

= −∑
n

m m
j j

j
r N N               (3.18)

By using the expressions (3.16) and (3.18), the vector  U is given by:

{ }30,0,0,0, , , ,1,1,1,1 1, , 3+= = − k nU u u k n                        (3.19)

Having defined the knots vector U, it remains to calculate control 
points to build the B-Spline curve (Figure 29) which passes by the 
nodes m

iN . We can define a system of equation (n+1)×( n+1):

( )
0=

= ∑
n

m
i j i j

i
N B u P                (3.20)

Under matrix form, we can rewrite (3.20) as follows:

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

0 0
0 1 1 1 1 1

1 1
0 2 1 2 1 2

1 1
1 1 1 1 1

1 0 0 0

0
0
0 0 0 0 1

−

−

− −
− − − −

 
   
   
   
   = 
   
   
         



 

 
 

  



m

n m

n

m
n n

n n n n n m
n n

P N
B u B u B u

P N
B u B u B u

P N
B u B u B u

P N

   (3.21)

Standard finite element 
with Lagrange 

Contact border described 
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1
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2
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3
mN

4
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5
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Figure 26: Contact border smoothed with a cubic B-Spline curve.

 

Figure 27: Application of cubic B-Spline in FiEStA code.©
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Figure 28: B-spline for an interpolation of 4 nodes.
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Figure 29: Shape function of a B-Spline.
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Pj are control points to be calculated and Bj,3 the shape functions 
(From (3.21), control points are obtained with:

{ } [ ] { }1−= m
n n nP B N                 (3.22)

Using the expression (3.20) and (3.22), we can write any point of 
the B-Spline curve as follows:

( ) ( )
0=

= ∑
n

m
i i

i
x t B t P                (3.23)

With t∈ [0,1]. In particular, if t corresponds to a value in the vector 
U, the calculated point is a mortar node.

We can describe all the points of the B-Spline curve according to 
a list of control points and a polynomial shape function as shown in 
the relation (3.23). We detail the mode of calculation of the used shape 
function and the contents of control points set. In the Figure 30, points 
P1i and P2i are fictitious points used to find a cubic interpolation from a 
succession of three linear interpolations.

We have to define the expression of a point in the B-Spline curve 
provided between nodes 0

mN an 1
mN d. This expression will be a 

polynomial of order 3 according to the variable t (Cubic B-Spline).

( )
( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

20 21

10 11 11 12

0 1 1 2

1 2 2 3

1

1 1 1

1 1 1 1

1 1 1

= − +

   = − − + + − +   
    = − − − + + − +    

    + − − + + − +    

P t P t P

t t P t P t t P t P

t t t P t P t t P t P

t t t P t P t t P t P

           (3.24)

The calculation of the polynomial P depends on control point P0, 
P1, P2 and P3 and. A modification of the basic geometry for the mortar 
segment between nodes 1

mN and 1
mN does not change the definition of 

all the B-Spline curve but only the position of four control points which 
define all the points of the curve on this segment. The expression (3.24) 
can be rewritten as follows:

P=(1-t)3 P0 +3t (1-t)2 P1 + 3t2 (1-t) P2+ t3 P3 (3.25)

We derive (3.23) to obtain the expression of the tangent vector by 
applying (3.5):

( ) ( ),
0

ξ
=

= ∑
n

m
i i

i
a t B t P                  (3.26)

To calculate the minimal distance which separates both bodies, it is 
necessary to verify the projection condition (Figure 31):

( ) ( ). 0=


m nm mx t x a t                (3.27)

The normal vector for the B-Spline curve is obtained by applying (3.1).

We return to the application of projection condition (3.27), we 
have:

(xnm-xm). am=0                                                                                        (3.28)

To satisfy this condition, we chose to give an expression of xt xm 
according to the control points which are associated to it and also of the 
tangent vector am in this point by using the relation (3.5 ). This vector 
can be defined as follows:

am=-3(1-t)2 P0+ (3-12t+9t2) P1+(6t-9t2) P2+3t2P3 (3.29)

By applying the relation (3.26) with the relation (3.27) we obtain 
a polynomial of order 5 to be solved to find the good value of t which 
verifies the condition of projection. By applying Newton’s iterations, 
we are not going to develop all the terms of (3.26) according to control 

points to avoid an expression complicated according to the latter. A 
derivative of the expression (3.26) gives:

( ) ( )2

,. 0− + − =m nm m m
ta x x a                 (3.30)

with

( ) ( ) ( ), 0 1 2 36 6 12 18 6 18 6= − + − + + − +m
ta t P t P t P t P                (3.31)

Now, we have quite the expressions of the terms in (3.30) to 
calculate the projection by Newton’s method.

The application of the c projection condition in (3.5) gives:

( ) ( ) 0− − − =nm m m nm m m
X X X Y Y Yx x a x x a               (3.32)

By using the expression (3.23) and (3.26), we obtain a polynomial of 
order 5 according to the variable t. Newton’s iterations will be essential 
to determine the good value of t that satisfies the conditions (3.32).

After some iteration, we obtain the value of t which assures the 
projection. This value is located between two values ui and ui+1 in the 
knots vector U. We can calculate the value of the corresponding natural 
coordinate  to define the tangent matrix and the residual vector for 
the resolution of the contact problem. A variable changing will be 
necessary in this case, it’s applied as follows:

1

ξ
+

−
=

−
i

i i

t u
u u

               (3.33)

During the calculation, mortar nodes can change position. It 
is necessary to recalculate in this case control points and the knots 
vector U. The modification is then local and not global. A point xm(u) 

 0
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1
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3
mN( )ma t

nmx

nmx

( )mn t

Figure 30: Projection on the mortar surface smoothed by cubic B-Spline.
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Figure 31: Influence of the change of the control point position. 
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Figure 32: Contact problem between two half-rings.
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on the curve is piloted by four control points in the case of a cubic 
interpolation. It will not be influenced by a change of a control point 
position which it does not depend (figure 32).

The smoothing of the mortar surface by cubic B-Spline provides C2 
continuity for the entire curve. The displacement field in the element is 
often defined by a Lagrange interpolation (first order in this study) while 
the geometry of the border is described by a cubic polynomial. This 
difference in the degree of interpolation can present an incompatibility 
between the geometry and the kinematic description.

The calculation of the value of the natural coordinate ξ requires the 
use of Newton’s iterations to satisfy the condition of projection. These 
iterations have not much influence at the time of search for projection 
with regard to a not smoothed interface. The addition of these iterations 
is small with regard to the continuity of the normal and the regularity 
of the contact pressure which brings this technique.

Example of Application
We consider two half-rings in contact [70] as shown in the 

Figure 33. One ring is fixed to its basis when the other one, it moves 
horizontally with ∆x=4 UL. The same hyper-elastic material described 
by Néo-Hooke law is considered for both solids. The Young modulus is 
Ering=689.56 F/UL2 and the Poisson coefficient is v=0.32. The inner radius of 
the fixed ring is Ri=10 UL and the outer radius is Re=12 UL. These dimensions 
are respectively Ri=8 UL and Re=10 UL for the other ring.

Materials characteristics :
2689.56=ringE F UL

0.32ν =

loading
4∆ =x UL

We smooth the master surface to solve this problem. Even by using 
several smoothing techniques, the frictional contact problem remains 
rather difficult in particular for complex geometry. The role of the 
smoothing in this case is to move closer the finite elements model to 
CAD model. This approach can be avoided by using an iso-geometrical 
model (Figures 34 and 35).

All the algorithms detailed in this work are implemented in a house 
code FiEStA (Finite Elements Structural Analysis). It is a FEM code 
developed in language C ++. The code presents a graphical interface 
simplified to minimize the time required for the creation of a model.

Conclusion 
This work concerned the simulation and the modeling of a 

contact problem between deformable two-dimensional solids in finite 
deformation. We used the mortar method for the discretization of the 
contact with various formulations for the application of the contact 
and friction constraints. We examined several numerical examples and 
in particular contact tests in forming process. We released further to 
these examples different choices concerning the contact formulation 
to use and the necessity of discretization improvement in the contact 
interface. We essentially revisited two points of numerical detail:

A discontinuity of the normal vector evolution in the mortar surface 
is established and which requires regularization. This need was filled 
at the beginning by a weighted averaged normal vector in the master 
surface of the contact. This solution remains restricted to examples 
of small deformations, that why the use of the Hermit polynomials. 
An improvement is observed but the contact area does not present a 
constant continuity that why the use of a cubic B-Spline curve. With 
this technique, the entire master surface is described by only one 
surface in which we notice a smooth and continuous evolution of the 
normal. It also result a better precision in the gap calculation and a 
remarkable stability of the normal contact pressure.

The use of B-Spline curves for the smoothing of the mortar surface 
was restricted to the skin of contact and not in all of the body. This 
choice can generate a kinematic incompatibility between the linear 
Lagrange discretization inside elements and the cubic description in 
the interface. A description by B-Spline of the border of all the elements 
even those who are not in contact will present a consequent loss of 
calculation time seen that it does not bring additional precision either 
to the calculation of the gap or to the evolution of the contact effort. 
A study by using the iso-geometrical analysis to replace the classic 
meshing and the mortar method for the application of the contact 
constraints will present a good alternative.
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