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Abstract

Reactive oxygen species (ROS) can serve as intracellular signals that promote cell proliferation and survival, or
as toxicants that cause abnormal cell death and senescence. Tumour repressor p53 is a ROS-active transcription
factor that upregulates the expression of antioxidant genes during low oxidative stresses, but promotes the
expression of pro-oxidative and apoptotic genes during high level stresses. The underlying mechanisms for p53
selectively to transcribe different groups of genes remain elusive. We recently found that p53 isoform Δ133p53 is
strongly induced by a low concentration of H2O2 (50 μM), as opposed to higher concentrations, and functions to
promote cell survival. Under the low oxidative stress, Δ133p53 is required for p53 to selectively upregulate the
transcription of the antioxidant genes SESN1 and SOD1 by binding to their promoters. The knockdown of either p53
or Δ133p53 in low oxidative stresses increases the intracellular O2

•– level, which results in accumulation of DNA
damage, cell growth arrest at the G2 phase that in turn leads to enhanced cell senescence. Our findings suggest
that an induction of Δ133p53 may correlate with ageing and human pathologies associated with oxidative stresses.
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Commentary
 Reactive oxygen species (ROS) including superoxide anion (O2

•-),
hydroxyl radical (OH•) and non-radical species hydrogen peroxide
(H2O2) are generated during mitochondrial oxidative metabolism and
as a cellular response to xenobiotics and bacterial invasion in aerobic
organisms [1,2]. Moderate levels of ROS can function as signals that
promote cell growth and division [3-5]. However, when overproduced,
ROS overwhelm a cell’s capacity to maintain redox homeostasis, and
can cause oxidative stress, which results in the oxidation of
macromolecules such as proteins, membrane lipids and mitochondria
or genomic DNA [6,7]. The detrimental accumulation of ROS
eventually leads to abnormal cell death and senescence, which
contributes to the development of neurodegenerative diseases, cancer,
and aging-related pathologies [8,9].

To maintain redox homeostasis, organisms have evolved with
numerous endogenous antioxidant defense systems including both
enzymatic and non-enzymatic antioxidant mechanisms that can either
scavenge ROS or prevent their formation [10]. Tumour repressor p53
plays important and complex roles in response to oxidative stress
[11-14]. In physiological and low levels of oxidative stress conditions,
p53 promotes cell survival by triggering the expression of antioxidant
genes such as superoxide dismutase 1 (SOD1), superoxide dismutase 2
(SOD2), glutathione peroxidase 1 (GPX1), Sestrin 1 (SESN1), Sestrin 2
(SESN2) and aldehyde dehydrogenase 4 family members A1
(ALDH4A1), which restore oxidative homeostasis [15-20]. In contrast,
in response to high levels of oxidative stress p53 induces apoptosis by
upregulating the expression of pro-oxidative genes such as PIG3 and
proline oxidase, and apoptotic genes such as BAX and PUMA
[18,21-29]. However, how p53 triggers the expression of different
groups of genes in response to various levels of ROS remains

perplexing until our recent article entitled “p53 coordinates with
Δ133p53 isoform to promote cell survival under low-level oxidative
stress” was published. ∆133p53 is an N-terminal truncated form of p53
with the deletion of both the MDM2-interacting motif and the
transcription activation domain, together with partial deletion of the
DNA-binding domain [30,31]. ∆133p53 is transcribed by an
alternative p53 promoter located in intron 4 of the p53 gene [32-34].
Full-length p53 can directly transactivate its transcription in response
to both developmental and DNA damage stresses. The induction of
∆133p53 subsequently antagonizes p53-mediated apoptosis [30,31,34].
However, the basal expression level of Δ133p53 can inhibit p53-
mediated replicative senescence by downregulating the expression of
p21WAF1 and miR-34a in normal human fibroblasts [35]. Being p53
target, ∆133p53 was strongly induced only by γ-irradiation, but not
ultraviolet (UV) irradiation or heat shock treatment, whereas full-
length p53 was activated under all three challenges. In response to γ-
irradiation, Δ133p53 represses cell apoptosis and promotes DNA DSB
repair via upregulating the transcription of repair genes [36].
Therefore, it is of interest to know whether Δ133p53 plays a role in
response to ROS stresses.

In our recent study, we used H2O2, a model oxidant, to explore the
biological function of Δ133p53 in human cells upon oxidative stresses
[37]. We found that the induction of p53 protein and transcript by
H2O2 was dose-dependent within the concentrations tested (25 μM to
400 μM). However, the increase of Δ133p53 protein and transcript
appeared to be limited to the lower dose range, with a maximum
induction at 50 μM H2O2, followed by a gradual drop at latter
concentrations. Interestingly, H2O2-induced cell survival response
correlated nicely to the level of Δ133p53 expression. Using various cell
viability analysis methods including MTT, WST-8, Trypan blue
staining and BRDU incorporation, we showed that an overexpression
of Δ133p53 augmented, whereas an under expression removed the 50
μM H2O2-induced increase in cell viability. The pro-survival role of
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Δ133p53 in response to low ROS stresses was confirmed in this study
with different cell lines and another oxidant, menadione (vitamin K3).

To investigate whether this role is associated with the protein anti-
apoptotic activity, we performed FACS analysis using anti-Annexin V
antibody staining. Our data revealed that neither the knockdown nor
overexpression of Δ133p53 produced an obvious effect on cell
apoptosis under 50 μM H2O2 treatment. On the other hand, cell cycle
analysis with Propidium Iodide (PI) staining revealed that the
proportion of cells at the G2 phase was significantly increased by the
knockdown of Δ133p53 under the same treatment. These results
demonstrated that under 50 μM H2O2 treatment, Δ133p53 increases
cell viability by promoting cell division, instead of exerting its anti-
apoptotic activity.

Dihydroethidium (DHE) staining analysis uncovered that the
knockdown of Δ133p53 significantly increased intracellular O2

•- level
upon 50 μM H2O2 treatment. Comet assay showed that the increased
accumulation of ROS induced DNA damage with single-stranded
breaks (SSB), instead of DNA double-stranded breaks (DSB). The
accumulation of DNA SSBs from the knockdown of Δ133p53
demonstrated that Δ133p53’s positive role in DNA DSB repair does not
play a role in promoting cell survival during low ROS stresses.
Eventually, a high-level DNA damage brings about cell growth arrest at
G2 phase which finally leads to cell senescence.

In our study of the underlying molecular mechanisms, we found
that Δ133p53 upregulated the transcription of the antioxidant genes
SESN1 and SOD1 in a p53 dependent manner. Furthermore, Δ133p53
was required for p53 to increase the expression of these two genes in
response to low oxidative stress. Therefore, our study revealed that p53
coordinates its isoform Δ133p53 to selectively transactivate the
expression of antioxidant genes to promote cell survival in low
oxidative stress conditions.

A number of questions remain unanswered. For instance, why does
the expression of Δ133p53 gradually decrease with the concentration
of H2O2 increases beyond 50 μM? How does Δ133p53 mediate p53 to
increase the transcription of antioxidant genes? In addition, it has been
well-established that increases in ROS levels and decreases in
antioxidant capacity contribute to the ageing process through the
oxidation of different macromolecules, such as lipids, proteins and
genomic or mitochondria DNA [1]. The protein p53 has also been
linked to ageing [12]. For instance, the overexpression of Δ40p53 (N-
terminal truncated isoform) in mice results in increased p53 activity
and leads to accelerated ageing [38]. However, mice carrying both an
additional copy of genomic p53 (including all its isoforms) and ARF
loci exhibit an increased expression of antioxidant activity and
decreased levels of endogenous oxidative stresses, which are both
correlated with enhanced life span [39]. These results suggested
possible roles of the other p53 isoforms in this phenomenon. Here, we
showed that Δ133p53 is required for p53 to upregulate the expression
of antioxidant genes in response to low oxidative stress. It will be
interesting to know whether the p53 isoform Δ133p53 plays a role in
ageing process. These questions deserve further explorations.

In summary, we propose a hypothetical model for a dual role of p53
in response to ROS stress in Figure 1. In response to low oxidative
stresses (under a certain threshold), p53 is accumulated to a relative
low level for transcription of Δ133p53. Subsequently, Δ133p53
coordinates with p53 to promote cell survival by upregulating
expression of antioxidant genes; whereas, in high oxidative stress
conditions (beyond a certain threshold), p53 is accumulated to a high

level with less Δ133p53 induction. Higher level p53 induces cell death
by upregulating expression of pro-oxidative and apoptotic genes.

Figure 1: p53 signaling in response to oxidative stresses. Upon low
oxidative stresses (under a certain threshold), p53 protein is
activated to a relative low level for transcription of its target genes
including Δ133p53. The expression of Δ133p53 can coordinate with
p53 to increase the expression of antioxidant genes such as: SOD1
and SEN1. Subsequently, the expression of SOD1 and
SEN1promotes cell survival by maintaining redox homeostasis;
Under high oxidative stresses (beyond a certain threshold), p53
protein is accumulated to a high level to guide cells to apoptosis by
inducing the expression of pro-oxidative and apoptotic genes.
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