

18th World Congress on

DENTAL HEALTH

September 22-23, 2025 | London, UK

Influence of digital manufacturing and abutment design on full-arch implant prostheses. An in-vitro study

Shahad M. Altwaijri

Princess Nourah bint Abdulrahman University, Saudi Arabia

Achieving implant-supported accurate fit in prostheses is critical to avoid mechanical complications; however, the influence of digital manufacturing techniques and abutment designs on misfit and preload remains unclear. This study evaluated the impact of different manufacturing techniques (CAD-cast, 3D printing) and abutment connection types (engaging [E], non-engaging [NE]) on the misfit and preload of implant-supported cantilevered fixed dental prostheses (ICFDPs). Misfit was measured at six points using scanning electron microscopy, and preload was assessed via eight strain gauges placed buccally and lingually on four implants. Frameworks were torqued to 35 Ncm, retorqued after 10 minutes, and subjected to 200,000 cycles of loading. Mean preload values ranged from 173.4 ± 79.5 Ncm (PF) to 330 ± 253.2 Ncm (3DP). Preload trends varied depending on the abutment type and manufacturing technique, with the 3DP group showing higher preload in engaging (E) abutments, whereas the CAD-cast group showed the opposite pattern. Although preload values varied numerically, these differences were not statistically significant (P = 0.5). In terms of misfit, significant differences were observed between groups (P < 0.05), except between CAD-cast E (86.4±17.8µm) and 3DP E (84.1±19.2µm). Additionally, E and NE abutments showed significant differences in misfit within both CAD- cast and 3DP groups. Overall, 3DP frameworks showed superior fit over CAD-cast. These findings suggest that 3DP may offer improved clinical outcomes in terms of implantabutment fit.

Biography

Shahad M. Altwaijri, researcher and clinician at Princess Nourah bint Abdulrahman University, Saudi Arabia. Specializes in digital dentistry, implant prosthodontics, and prosthesis design. Her research focuses on optimizing digital manufacturing and abutment design for full-arch implant restorations. Leads in-vitro studies that evaluate biomechanical performance and clinical applicability of implant prostheses. Combines laboratory innovation with clinical insights to improve prosthetic outcomes and patient care. Presenting: "Influence of digital manufacturing and abutment design on full-arch implant prostheses. An in-vitro study."