Joint Event on

Euro Structural Biology & Clinical Trials and NanoPharma

March 18-19, 2019 | Paris, France

Effects of spiro-bis heterocycles on proliferation and apoptosis in human breast cancer cell lines

Lamia Hamdan Ramdani^{1, 2, 3}, Oualid Talhi^{1, 5}, Nadia Taibi¹, Laetitia Delort^{2, 3}, Caroline Decombat^{2, 3}, Artur Silva⁵ and Khaldoun Bachari¹, Marie-PauleVasson^{2, 3, 4} and Florence Caldefie-Chezet^{2, 3}

¹CRAPC, Algeria ²University Clermont Auvergne, France ³Research Center in Human Nutrition CRNH Auvergne, France ⁴Anticancer Center Jean-Perrin, France ⁵University of Aveiro, Portugal

B reast cancer is the first cause of cancer death in women worldwide and a major concern to public health. The main axes of this work consist in studying the antiproliferative and pro-apoptotic effects of spiro-bis heterocycles on human breast cancer cell lines MCF-7 and MDA-MB-231. On the structural point of view, the compounds feature a hydantoin moiety attached either to diazole, isoxazole, diazepine, oxazepine or benzodiazepine via the privileged tetrahedral spiro-linkage. The treatment with compounds three and six, corresponding to spiro [hydantoin-isoxazole] and spiro [hydantoin-oxazepine] respectively, resulted in a significant decrease of cell proliferation and the induction of the apoptosis in both breast cancer cell lines. However, the compound four (spiro [hydantoin-diazepine]) demonstrated an antiproliferative activity only against MDA-MB-231. The qRT-PCR revealed an up-regulation of MDM2, strictly p53-dependent, and an increase of the expression of pro-apoptotic genes such as caspase 3 and BAX in MCF-7 wild-type p53 and MDA-MB-231 mutant p53 breast cancer cells. In summary, the results suggested that our compounds promoted the apoptosis of breast cancer cell lines through p53-dependent and independent pathways.

lamia_pharm@yahoo.fr