conferenceseries.com 3rd International Conference on **BIOPHARMACEUTICS AND BIOLOGIC DRUGS** & **5th INTERNATIONAL PHARMACY CONFERENCE** August 31-September 01, 2017 Philadelphia, USA

Curcumin potentiates the function of human a7-nicotinic acetylcholine receptors expressed in SH-EP1 cells

Murat Oz¹, Eslam El Nebrisi², Keun-Hang Susan Yang³ and Nadine Kabbani⁴ ¹Qatar University, Qatar ²UAE University, UAE ³Chapman University, USA ⁴George Mason University, USA

E ffects of curcumin, a biologically active ingredient of turmeric, was tested on the Ca2+ transients induced by the activation E of a7 subunit of the human nicotinic acetylcholine (a7 nACh) receptor expressed in SH-EP1 cells. Curcumin caused a significant potentiation of choline (1 mM)-induced Ca2+ transients with an EC50 value of 231 nM. The potentiating effect of curcumin was not observed in Ca2+ transients induced by high K+ (60 mM) containing solutions or activation of $\alpha 4\beta 2$ nACh receptors. Notably, the effect of curcumin was not observed when curcumin and choline were co-applied without curcumin pre-incubation. The effect of curcumin on choline-induced Ca2+ transients was not reversed by pre-incubation with inhibitors of protein C, A, and CaM kinases. Metabolites of curcumin such as tetrahydrocurcumin, demethylcurcumin, and didemethylcurcumin also caused potentiation of choline-induced Ca2+ transients. Collectively, our results indicate that curcumin directly potentiate the function of the a7-nACh receptor expressed in SH-EP1 cells.

murat.oz@gu.edu.ga