conferenceseries.com

Joint Event on 3rd International Conference on MEDICAL SCIENCES, HYPERTENSION AND HEALTHCARE world Congress on ORGAN TRANSPLANTATION AND ARTIFICIAL ORGANS August 24-25, 2018 Tokyo, Japan

The pathophysiological roles of peroxynitrite in salt-sensitive hypertension

Dewan Syed Abdul Majid Tulane University School of Medicine, USA

N ormally, superoxide (O^{2^-}) remains at minimal levels in tissues as it reacts with nitric oxide (NO) to form peroxynitrite (ONOO⁻). Although studies have demonstrated a reciprocal regulation of renal tubular sodium (Na+) reabsorption by NO and O²⁻, the specific role for ONOO⁻ in the regulation of renal sodium excretion is not yet clearly defined. It has been demonstrated that an interaction between NO and O²⁻ forming ONOO⁻ plays an important reno-protective role in the kidney which helps to prevent excessive tubular Na+ reabsorption in conditions such as in elevated renin-angiotensin system. However, its regulation in various pathophysiological conditions, particularly in salt sensitive hypertension is not yet clarified. ONOO⁻ formation is increased by Angiotensin II (AngII) as well as by High Salt (HS) intake as both of these stimulate both NO and O²⁻ production. However, conditions such as impairment in NOS activity, its pharmacological inhibition or gene deletion, reduces the formation of ONOO⁻. Recent findings show that chronic AngII with HS intake result in aggravated hypertension and renal injury in endothelial NO synthase knockout mice (a model for minimal ONOO⁻ formation) compared to those in wild-type mice that suggest a protective role for ONOO⁻ in these adverse effects of AngII. This talk will present evidence from different studies in our laboratory and others implicating the functional roles of ONOO⁻ in a coordinated regulation of kidney function, an imbalance of which could be involved in the patho-physiology of salt-sensitive hypertension.

majid@tulane.edu

Volume 6