Global Congress on

Biochemistry, Glycomics & Amino Acids

December 08-09, 2016 San Antonio, USA

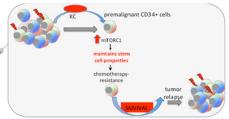
Inducing differentiation of premalignant cells as a novel therapeutic strategy in hepatocarcinoma

Uta Kossatz-Boehlert¹, Benita Wolf¹, Kanthrin Krieg¹, Christine Falk², Kai Breuhahn³, Hildegard Keppeler¹, Tilo Biedermann^{4,5}, Evi Schmid¹, Stefan Warmann¹, Joerg Fuchs¹, Silvia Vetter⁴, Dennis Thiele¹, Maike Nieser¹, Meltem Avci-Adali¹, Yulia Skokowa¹, Ludger Schöls^{4,6}, Stefan Hauser⁶, Marc Ringelhahn^{5,7}, Tetyana Yevsa² and Mathias Heikenwalder⁵

¹University Hospital Tuebingen, Germany

²Hannover Medical School, Germany

³University Hospital Heidelberg, Germany ⁴University of Tuebingen, Germany


⁵Technichal University of Munich, Germany

⁶German Center for Neurodegenerative Diseases (DZNE), Germany

⁷German Cancer Research Center (DKFZ), Germany

repatocellular carcinoma (HCC) represents the second leading cause of cancer-related deaths and is reported to be resistant Tto chemotherapy caused by tumor-initiating cells. These tumor-initiating cells express stem cell markers. An accumulation of tumor-initiating cells are found in 28-50% of all HCC and is correlated with a poor prognosis. Mechanisms that mediate chemoresistance include drug export, increased metabolism and quiescence. Importantly, the mechanisms that regulate quiescence in tumor-initiating cells have not been analyzed in detail so far. In the present research we have developed a single cell tracking method to follow up the fate of tumor-initiating cells during chemotherapy. Thereby, we were able to demonstrate that mCXCL1

exerts cellular state specific effects regulating the resistance to chemotherapeutics; mCXCL1 is the mouse homolog of the human Interleukin 8, a chemokine which correlates with poor prognosis in HCC patients. We found that mCXCL1 blocks differentiation of premalignant cells and activates quiescence in tumor-initiating cells. This process depends on the activation of the mTORC1 kinase. Blocking of the mTORC1 kinase induces differentiation of tumor-initiating cells and allows their subsequent depletion using the chemotherapeutic drug doxorubicin. Our work deciphers the mCXCL1-mTORC1 pathway as crucial in liver cancer stem

cell maintenance and highlights it as a novel target in combination with conventional chemotherapy

Fig.1: Maintenance of stem cell characteristics by mCXCL1 (KC) via the activation of mTORC1 drives resistance of premalignant tumor-initiating cells. The mechanism induces a G1 arrest of tumor-initiating cells. mTORC1 blockade induces differentiation and sensitivity to doxorubicin.

uta.kossatz-boehlert@med.uni-tuebingen.de