

2nd World Congress on Petrochemistry and Chemical Engineering

October 27-29, 2014 Embassy Suites Las Vegas, USA

Mathematical modelling of the aqueous phase reforming of sorbitol

Farid Aiouache¹, Lisa M. McAleer¹, Quan Gan², Ala'a H. Al-Muhtaseb¹, Joseph Zeaiter³ and Mohammad N. Ahmad^{1,3} ¹Queen's University Belfast, UK ²Sultan Qaboos University, Oman ³American University Beirut, Lebanon

This work presents a kinetic model for the aqueous phase reforming of sorbitol that uses a lumping scheme of intermediates and describes the complex path to gas products via a reforming route and liquid oxygenate route including hydrodeoxygenation, decarbonylation and dehydrogenation reactions. The model was tested at temperatures ranging from 473 to 523 K, using monometallic Ni and bimetallic Ni-Pd catalysts supported on γ -Al₂O₃, ZrO₂ and CeO₂. The model revealed that the relevant competing paths were a function of the composition of catalyst and the conversion to the carbon gaseous products. Paths of reforming and CO₂ methanation were more important than decarbonylation and hydrodeoxygenation at small conversions for all catalysts whereas the hydrodeoxygenation-decarbonylation towards alkanes release was more competitive than the reforming at high conversions with Ni/Al₂O₃ and Ni-Pd catalysts supported on ZrO₂ and CeO₂ but was still less competitive with Ni-Pd catalyst supported on γ -Al₂O₃.

jz08@aub.edu.lb