

## International Conference and Expo on Oil and Gas

November 16-18, 2015 Dubai, UAE



## **Robert Enick**

University of Pittsburgh, USA

## CO<sub>2</sub> miscible and immiscible displacement in the United States: The promise, the problems, and the lessons for others

A n overview of the status of  $CO_2$  miscible and immiscible enhanced oil recovery in the United States will be provided. The natural and anthropogenic sources of the  $CO_2$  will be detailed and its mode of distribution to the oilfield will be outlined. The formations which are most suitable for  $CO_2$  EOR will be reviewed. The most important solvent properties of  $CO_2$  will be explained along with the mechanisms responsible for the excellent displacement efficiency associated with  $CO_2$  EOR. The foremost technical challenges with  $CO_2$  EOR will also be discussed, especially the problems caused by the low  $CO_2$  viscosity. Chemical and mechanical strategies that are being developed to address these conformance and mobility control issues will be summarized. Promising new applications for  $CO_2$  EOR, such as the recovery of highly viscous oils, oils found in tight shale formations, and oil in the residual oil zone will be reviewed. Finally, the outlook for continued  $CO_2$  EOR will be presented.

## **Biography**

Robert Enick is the Professor of the Department of Chemical and Petroleum Engineering at the University of Pittsburgh. He is an ORISE Faculty Fellow at the National Energy Technology Laboratory, where he teams with NETL scientists to study high pressure phase behavior and viscometry related to primary and tertiary oil recovery processes. He also has expertise in improving the performance of  $CO_2$  enhanced oil recovery by decreasing its mobility with  $CO_2$ -soluble thickeners,  $CO_2$ -soluble foaming agents and brine-soluble surfactants. He also studies the thickening of natural gas liquids for improved hydrocarbon miscible displacement.

rme@pitt.edu

Notes: