

^{3rd} World Congress on **Petrochemistry and Chemical Engineering**

November 30-December 02, 2015 Atlanta, USA

Numerical simulation of the liquid-solid counter-current fluidization processes inside an extraction column based on the particle trajectory model

Li Zhongyuan¹, Li Xinganga², Sui Honga² and Li Honga² ¹Tianjin University, China ²National Engineering Research Centre for Distillation Technology, China

The liquid-solid counter-current fluidization processes in an extraction column were numerically simulated based on the particle trajectory model of Eulerian-Lagrangian method. The simulation approach was previously validated by experiments. A power function correlation between the dimensionless slip velocity U_{slp}/Ut and hold-up fraction was proposed, and the operational zone in the countercurrent fluidization process was determined. Moreover, the simultaneous countercurrent fluidization of multi-particles with different diameters was also simulated. The comparison between the simulation results and the calculating values of the multi-particle free sedimentation model based on non-interference assumption shows considerably consistent, which also verified the reliability of the simulation approach used in present work.

Biography

Zhongyuan Li completed her Phd and she is from School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.

lizhongyuan@tju.edu.cn

Notes: