

3rd World Congress on

Petrochemistry and Chemical Engineering

November 30-December 02, 2015 Atlanta, USA

Characterization of the corrosion of oilwell cement exposed to H_2S under high-sulfur gas reservoir conditions

Gu Tao, Guo Xiaoyang , Li Zaoyuang, Huang Sheng and **Cheng Xiaowei** Southwest Petroleum University, P.R. China

H₂S is an acidic and toxic gas and the corrosion of H₂S on oilwell cement is considered to be a great challenge for wellbore integrity and environmental safety in the exploitation of high-sulfur gas reservoir. In our work, an unidirectional sample was designed to simulate the actual downhole condition, and the corrosion performances of oilwell cement exposed to humid H₂S gas and H₂S-rich brine were investigated using designed unidirectional samples. Compressive strength, microhardness, porosity, gas permeability, SEM, EDS, and XRD analyses were conducted to compare the dissimilarity of H₂S attack in two exposure scenarios. The experimental results show that the corrosion degree of cement exposed to humid H₂S gas was lower due to a dense gypsum layer formed on the cement surface; this layer inhibited inward penetration of H₂S by blocking diffusion. On the contrary, a porous and loose amorphous silica gel section formed on the headspace of brine-exposed cement for dissolution and migration effects of brine, which facilitated the penetration of H₂S to the interior of cement. The degradation mechanism of cement and the effects of exposure scenario on cement properties are proposed.

gutaoswpu@163.com

Notes: