

24th World Congress on**NANOMATERIALS AND NANOTECHNOLOGY****July 12-13, 2018 Bangkok, Thailand****Preparation of TiO₂ film as nanocatalyst for functionalization of styrene-butadiene rubber****Kanpitcha Amornjiarasak and Jitladda Sakdapipanich**

Mahidol University, Thailand

Styrene Butadiene Rubber (SBR) has wide variety of applications such as footwear, conveyor belts and especially tires. However, their usage is limited due to their inert hydrocarbon nature. A method used for improving properties of rubber latex is an introduction of some polar reactive like hydroxyl group onto the molecular main chain. A chemical modification herein was offered to prepare functionalized rubber latex via photo catalytic reaction using TiO₂ film as a catalyst. The appropriate TiO₂ film was prepared by spin-coating technique, followed by calcination at 550 °C. The efficiency, crystalline form and topology of TiO₂ were analyzed by the degradation of Methylene Blue (MB), XRD and AFM respectively. The photo catalytic activity of TiO₂ film decreased in each time of use, nevertheless performance of TiO₂ film could be recovered under a long period of UV-cleaning. Subsequently, the functionalization of SBR was investigated under UV irradiation with presentation of TiO₂ film. Several techniques were used for characterization of modified SBR: FT-IR, ATR and ¹H-NMR spectroscopy. The hydroxyl functional group of SBR was observed after 3 hours of irradiation, using 20% H₂O₂ and UV 80W.

Biography

Kanpitcha Amornjiarasak is a graduate student of Polymer Science and Technology at Mahidol University, Thailand.

jitladda.sak@mahidol.ac.th

Notes: