

JOINT EVENT

28th International Conference and Expo on**Nanoscience and Nanotechnology**3rd World Congress and Expo on

&

Graphene & 2D Materials

November 26-28, 2018 | Barcelona Spain

Novel TiO₂/g-C₃N₄ photocatalysts for photocatalytic reduction of CO₂ and for photocatalytic decomposition of N₂O**P. Praus^{1,2}, M. Reli¹, P. Huo¹, M. Šihor^{1,2}, I. Troppová¹, L. Matějová¹, L. Svoboda^{1,2}, L. Čapek³, V. Matějka² and K. Kočí^{1,2}**¹IET, VŠB-Technical University of Ostrava, Czech Republic²FMMI, VŠB-Technical University of Ostrava, Czech Republic³FCHT, University of Pardubice, Studentská Czech Republic

Heterojunction TiO₂ and graphitic carbon nitride (TiO₂/g-C₃N₄) photocatalysts with the ratio of TiO₂ to g-C₃N₄ ranging from 0.3/1 to 2/1 were prepared by simple mechanical mixing of pure g-C₃N₄ and commercial TiO₂ Evonik P25 and calcination at 450 °C for 2 hours. Graphitic C₃N₄ was previously synthesized by heating of melamine in a muffle furnace at 550 for 2 hours. All the nanocomposites were characterized by X-ray powder diffraction, UV-vis diffuse reflectance spectroscopy, photoluminescence, X-ray photoelectron spectroscopy, Raman spectroscopy, infrared spectroscopy, transmission electron microscopy, photoelectrochemical measurements, and nitrogen physisorption (the BET method). The prepared nanocomposites along with pure TiO₂ and g-C₃N₄ were tested for the photocatalytic reduction of carbon dioxide and the photocatalytic decomposition of nitrous oxide. The pure g-C₃N₄ exhibited the lowest photocatalytic activity in both cases, pointing to a very high recombination rate of photoinduced electron and holes. On the other hand, the most active photocatalyst toward all the products was (0.3/1)TiO₂/g-C₃N₄. The highest activity was achieved by combination of a number of factors: (i) specific surface area, (ii) adsorption edge energy, (iii) crystallite size, and (iv) efficient separation of the electrons and holes, where the efficient charge separation is the most decisive parameter. Based on the obtained results, it can be assumed that the semiconductor nanocomposites formed between g-C₃N₄ and TiO₂ can have potential applications for photocatalytic reactions employed in environmental remediation. This work was supported by the Czech Science Foundation (project No. 16-10527S).

Biography

Petr Praus has completed his PhD in the field Analytical Chemistry at the University of Pardubice, the Czech Republic, in 1995. Since 2002 he has been working as full professor in the field of Material Sciences and Engineering at the VŠB-Technical University of Ostrava, the Czech Republic. He has been working in the fields of synthesis and applications of nanomaterials and development and applications of analytical methods. He has published more than 60 papers in the reputed journals with impact factors.

petr.praus@vsb.cz

Notes: