

JOINT EVENT

28th International Conference and Expo on**Nanoscience and Nanotechnology**3rd World Congress and Expo on

&

Graphene & 2D Materials

November 26-28, 2018 | Barcelona Spain

The role of alcohol sacrificial agents on M/TiO₂ photocatalysts towards H₂ production reaction: A mechanistic study**Sathiyan Krishnamoorthy^a, Ronen Bar-Ziv^b, Dan Meyerstein^{a,b} and Tomer Zidki^{a*}**^aDepartment of Chemical Sciences, Ariel University, Ariel, Israel.^bDepartment of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel.^cDepartment of Chemistry, Nuclear Research Centre Negev, Beer-Sheva, Israel.

In the reported study we explored the performance of M/TiO₂ (M = Pt, Au) nanoparticles (NPs) as photocatalysts for HER (Hydrogen Evolution Reaction), with an emphasis on the role of the alcohol sacrificial reagent under light illumination. TiO₂ NPs of fine particle size were produced by the controlled hydrolysis of Titanium Tetrachloride (TiCl₄) as developed by Rabani et al.[1] and improved by us. The TiO₂-NPs were decorated with metal NPs by the addition of the metal precursors followed by sodium borohydride reduction (NaBH₄). Photocatalytic H₂ production experiments were conducted in aqueous solutions of methanol, ethanol and 2-propanol under light illumination with an optimum alcohol concentration of around 2.0 M. The hydrogen production yields follow the unexpected order: methanol > 2-propanol > ethanol. The addition of acetone (2-propanol oxidation product) into the reaction system suppressed the H₂ formation suggesting that the alcohol oxidation product reacts with the surface reducing agents (Hydrogen atoms, hydrides or electrons). These results give a better understanding of the role of the sacrificial reagents in HER.

Biography

Sathiyan Krishnamoorthy pursued his master's degree in chemistry from National Institute of Technology at Tiruchirappalli, India. Currently, he is a third year Ph.D. candidate at Ariel University, Israel. His current research work focuses on Investigation of mechanisms for Hydrogen evolution reaction with different nanoparticles and improving their catalytic activity.

krishgprs@gmail.com

Notes: