International Conference on

Membrane Science and Technology

September 11-12, 2017 | Paris, France

J Membra Sci Technol 2017, 7:2 (Suppl) DOI: 10.4172/2155-9589-C1-003

On the behavior of polysiloxane nanocomposite oxygen-nitrogen separation membrane

Jianzhong Lou North Carolina A&T State University, USA

Mixed matrix membranes were prepared with polydimethylsiloxane (PDMS) and different weight percent surface-treated fumed silica (SiO_2) to investigate the influence of SiO₂ on transport behavior of O₂ and N₂ gases in the nanocomposite membranes. Fourier transform infrared spectroscopy (FTIR) showed that OH functional group on the surface of SiO₂ was consumed upon incorporation of the silica into the polymer matrix. Thermogravimetric analysis (TGA) results revealed that SiO₂-PDMS has improved thermal property over neat PDMS, supporting the argument that there is good interaction between the polymer and the fumed silica.

Scanning electron microscopy (SEM) images of SiO₂-PDMS membranes showed uniform dispersion of SiO nanoparticles in PDMS matrix. SiO₂ nanoparticles disrupted and altered the PDMS polymer chains packing arrangement resulting in different membrane transport behavior of both O_2 and N_2 gases in SiO₂-PDMS compared to the neat PDMS membrane. While the O₂ flux through SiO₂-PDMS membranes was observed to increase with time, N_2 flux decreased with time before attaining steady state. The 10wt%SiO,-PDMS membrane exhibited improved performance compared to neat PDMS membranes with O₂/N₂ selectivity and O₂ permeability increased from 2.43 to 3.46 and 590 Barrer to 640 Barrer, respectively, at 30 psig. This improvement is attributed to the influence of the well dispersed SiO₂ nanoparticles in the PDMS matrix.

lou@ncat.edu