conferenceseries.com

JOINT EVENT ON

6th European Conference on

Predictive, Preventive and Personalized Medicine & Molecular Diagnostics

2nd World Congress on Human Genetics

September 14-15, 2017 | Edinburgh, Scotland

Benhassine T et al., J Pharmacogenomics Pharmacoproteomics 2017, 8:3(Suppl)

DOI: 10.4172/2153-0645-C1-016

Targeted next generation sequencing on Algerian patients with limb girdle muscular dystrophy type 2

Cherrallah A^{1,2}, Hamadouche T³, Nouioua S⁴, Tazir M⁴, Mathieu C⁵, Krahn M^{5,6}, Bartoli M⁶ and Benhassine T^{1*}

¹University of Science and Technology Houari Boumediene, Algeria

²Université Blida 1, Algeria

³University M'Hamed Bougara Boumerdes, Algeria

⁴CHU Alger Centre, Algeria

⁵Hospital Timone, France

⁶Université de la Méditerranée, France

Limb girdle muscular dystrophies type 2 (LGMD2) represent a large group of heterogeneous inherited muscle disorders. At present, the spectrum of these myopathies extends to more than 20 diseases. They are characterized by a high molecular heterogeneity, clinical overlaps, but a paucity of specific biomarkers. Indeed, even by critical clinical evaluation and muscle biopsy analyses, diagnosis is still difficult. To potentially remediate this difficulty, we applied targeted next generation sequencing technology to analyze 306 neuromuscular disorders associated genes. For this purpose, we studied 18 patients from five families presenting LGMD2 phenotype with ambiguous features for some patients. Putative pathogenic mutations were confirmed by Sanger sequencing. The data analysis of next generation sequencing done for the selected families allowed us to identify the putative causative molecular alterations in every family. Indeed, six different homozygous mutations were selected: 3 in the *DYSF* gene (c.5509G>A_p.Asp1837Asn, c.2643+1G>A et c.1834C>T_p.Q612X), 1 in the *LAMA2* gene (c.8244+1G>A), 1 in the *GMPPB* (c.458c>T_p.Thr153Ile) gene and 1 in the *CPT2* (c.338C>T_p.Ser113Leu) gene. All these variants correlated well with the clinical features. Our result showed the accuracy and efficiency of next-generation sequencing in gene diagnosis of genetically heterogeneous diseases. It also demonstrated the usefulness of this approach in studying genes that would have been difficult to suspect following a clinical examination.

Biography

Benhassine T is currently working at University of Science and Technology Houari Boumediene, Algeria.

trakibenhassine@hotmail.com

Notes: