

## International Conference on Functional and Comparative Genomics & Pharmacogenomics

November 12-14, 2013 DoubleTree by Hilton Hotel Chicago-North Shore, IL, USA

## Genomic profiles and CRTC1-MAML2 fusion distinguish different subtypes of mucoepidermoid carcinoma

Kowan Ja Jee<sup>1, 2</sup>, Marta Persson<sup>3</sup>, Kristiina Heikinheimo<sup>4</sup>, Fabricio Passador-Santos<sup>2, 5</sup>, Katri Aro<sup>6</sup>, Sakari Knuutila<sup>7</sup>, Edward W Odell<sup>8</sup>, Antti Mäkitie<sup>6</sup>, Kaarina Sundelin<sup>3, 9</sup>, Goran Stenman<sup>3</sup> and Ilmo Leivo<sup>1, 2, 7</sup>

<sup>1</sup>University of Turku, Finland <sup>2</sup>University of Helsinki, Finland <sup>3</sup>University of Gothenburg, Sweden <sup>4</sup>Turku University Hospital, Finland <sup>5</sup>Sao Leopoldo Mandic Institute and Cancer Research Center, Brazil <sup>6</sup>Helsinki University Hospital, Finland <sup>7</sup>HUSLAB, Finland <sup>8</sup>King's College London,UK <sup>8</sup>Sahlgrenska University Hospital, Sweden

ucoepidermoid carcinoma is the most common salivary gland malignancy, and includes a spectrum of lesions ranging  $\mathbf{W}$  from non-aggressive low-grade tumors to aggressive high-grade tumors. To further characterize this heterogeneous group of tumors we have performed a comprehensive analysis of copy number alterations and CRTC1-MAML2 fusion status in a series of 28 mucoepidermoid carcinomas. The CRTC1-MAML2 fusion was detected by RT-PCR or fluorescence in situ hybridization in 18 of 28 mucoepidermoid carcinomas (64%). All 15 low-grade tumors were fusion-positive whereas only 3 of 13 high-grade tumors were fusion-positive. High-resolution array-based comparative genomic hybridization revealed that fusion-positive tumors had significantly fewer copy number alterations/tumor compared with fusion-negative tumors (1.5 vs. 9.5; P=0.002). Twelve of 18 fusion-positive tumors had normal genomic profiles whereas only 1 out of 10 fusion-negative tumors lacked copy number alterations. The profiles of fusion-positive and fusion-negative tumors were very similar to those of low- and high-grade tumors. Thus, low-grade mucoepidermoid carcinomas had significantly fewer copy number alterations/tumor compared with high-grade mucoepidermoid carcinomas (0.7 vs. 8.6; P<0.0001). The most frequent copy number alterations detected were losses of 18q12.2-qter (including the tumor suppressor genes DCC, SMAD4, and GALR1), 9p21.3 (including the tumor suppressor genes CDKN2A/B), 6q22.1-q23.1, and 8pter-p12.1, and gains of 8q24.3 (including the oncogene MAFA), 11q12.3-q13.2, 3q26.1-q28, 19p13.2-p13.11, and 8q11.1-q12.2 (including the oncogenes LYN, MOS, and PLAG1). On the basis of these results we propose that mucoepidermoid carcinoma may be subdivided in (i) low-grade, fusion-positive mucoepidermoid carcinomas with no or few genomic imbalances and favorable prognosis, (ii) high-grade, fusion-positive mucoepidermoid carcinomas with multiple genomic imbalances and unfavorable prognosis, and (iii) a heterogeneous group of high-grade, fusion-negative adenocarcinomas with multiple genomic imbalances and unfavorable outcome. Taken together, our studies indicate that molecular genetic analysis can be a useful adjunct to histologic scoring of mucoepidermoid carcinoma and may lead to development of new clinical guidelines for management of these patients.

jekowj@utu.fi