

World Congress and Expo on

Applied Microbiology

August 18-20, 2015 Frankfurt, Germany

Anti-adhesive properties of cobalt bis(dicarbollide) amino derivatives against gram-positive bacteria

Kvasnickova E1, Masák J1 and Sicha V2

¹University of Chemistry and Technology Prague, Czech Republic

²Institute of Inorganic Chemistry of the CAS, Czech Republic

 \mathbf{B} in an extracellular polymeric matrix. They cause wide range of serious human infections and contaminate medical instruments. The huge difference between the behaviour of sessile cells in biofilm and planktonic cells in suspension is their high resistance against typically used antibiotic. The solution of this problem might be in the treatment of biofilmassociated infections with unusual compounds. Examples of such agents are boranes and their derivatives; 3D cluster inorganic compounds consist of boron, hydrogen, carbon or other elements. Our group of samples include cobalt bis(dicarbollide) anion and its amino derivatives with potentially pharmacologically usable properties. This study was focused on the monitoring of antimicrobial activity of cobalt bis(dicarbollide) anion and two cobalt bis-1,2-dicarbollide amino derivatives on a number of selected opportunistic pathogenic microorganisms involving representatives of yeast, gram-negative bacteria and grampositive bacteria. The second aim was to investigate the anti-adhesive properties of these substances against gram-positive bacteria Staphylococcus epidermidis. The antimicrobial activity was investigated in Biocreen C and the influence of cobalt bis-1,2-dicarbollide amino derivatives on S. epidermidis microbial adhesion inhibition was determined by crystal violet assay and XTT method (evaluation of metabolic activity). We have proved that selected cobalt bis-1,2-dicarbollide amino derivatives have significant antimicrobial activity and selectivity against gram-positive bacteria and we also demonstrated their antiadhesive properties against S. epidermidis.

Biography

Kvasničková E is a PhD studer	nt at the University of Chemical Techr	ology, Prague, Faculty	y of Food and Biochemical Tec	chnology, Department of Biotec	chnology. She
is an author or co-author of 1 p	paper in peer-reviewed international	journal (impact 0.604)	, and 6 papers in conference	proceedings.	

Notes: