Biotechnology and Microbiology

June 28-29, 2018 | Amsterdam, Netherlands

OMVs from Novosphingobium sp. PP1Y: isolation, purification and partial characterization of a potential biotechnological tool for biocatalysis and drug delivery

Viviana Izzo¹, Federica De Lise², Francesca Mensitieri², Fabrizio Dal Piaz¹, Eugenio Notomista², Giulia Rusciano², Antonio Sasso², Armando Zarrelli², Stefany Castaldi², Maria Lumacone², Amelia Filippelli¹ and Alberto Di Donato² ¹University of Salerno, Italy

²University of Federico II Naples, Italy

Outer membrane vesicles (OMVs) are nanostructures of 20-200 nm diameter deriving from the surface of several Gram-negative bacteria as part of their natural growth cycle, which are involved in cellular communication, biofilm formation and nutrient acquisition. OMVs have attracted the attention of biotechnological industries for their potential use as immobilization tools and drug delivery systems. The biotechnological use of OMVs is currently limited, among others, by the presence of the immunogenic LPS typically present in the outer membrane (OM) of Gram-negative bacteria. Novosphingobium sp. PP1Y is a marine microorganism belonging to the order Sphingomonadales, which lack LPS on their OM, which was isolated by our research group in the harbor of Pozzuoli and microbiologically characterized; its genome has been sequenced and completely annotated. We have successfully isolated OMVs from Novosphingobium sp. PP1Y grown in minimal medium. Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM) were used to confirm OMVs production, which resulted to occur only when PP1Y was grown in minimal medium supplemented with 0.4% glutamic acid as sole carbon and energy source. AFM, DLS and nanosize analysis of purified vesicles showed these OMVs to have a circular morphology and a diameter of \approx 200 nm. A finely controlled fatty acids and proteins distribution in these extracellular nanostructures was found. Interestingly, the presence of an active protease IV activity was verified in purified OMVs from strain PP1Y, thus prompting a future use of these vesicles as biocatalysts and/or as drug delivery systems in biomedical applications.

vizzo@unisa.it