20+ Million Readerbase
Indexed In
  • Academic Journals Database
  • Genamics JournalSeek
  • Academic Keys
  • JournalTOCs
  • China National Knowledge Infrastructure (CNKI)
  • Scimago
  • Access to Global Online Research in Agriculture (AGORA)
  • Electronic Journals Library
  • RefSeek
  • Directory of Research Journal Indexing (DRJI)
  • Hamdard University
  • EBSCO A-Z
  • OCLC- WorldCat
  • SWB online catalog
  • Virtual Library of Biology (vifabio)
  • Publons
  • MIAR
  • University Grants Commission
  • Geneva Foundation for Medical Education and Research
  • Euro Pub
  • Google Scholar
Share This Page
Journal Flyer
Flyer image

Abstract

Statistical Enhancement of Cyanide Degradation Using Microbial Consortium

Virender Kumar, Vijay Kumar and Tek Chand Bhalla

Remediation of cyanide contaminated water bodies using microorganisms is a popular alternative over chemical and physical methods of cyanide detoxification. The objective of the present study is to develop a microbial consortium using three bacteria, i.e., Enterobacter sp. RL2a, Serratia marcescencs RL2b and Achromobacter sp. RL2c for effective degradation of simulated cyanide wastewater. In vitro cyanide degradation was optimum with 2% inoculum volume of cells; pH 6.0, 30°C temperature at 20 mM substrate concentration leading to complete cyanide removal in 36 h. Response surface methodology (RSM) approach was used for optimization of reaction conditions for cyanide degradation using 5 mg ml-1 resting cells of microbial consortium. Plackett-burman design depicted that three variables viz. time, resting cells of strain RL2b and pH exhibit positive effect on cyanide degradation. The analysis of the quadratic regression model suggested that the model was very significant as correlation coefficient (0.847) closer to 1 denotes better correlation between the observed and predicted responses. The model was validated by performing the experiment under optimum conditions, which resulted in 63% cyanide degradation in 1 h reaction and complete degradation of 20 mM cyanide in 6 h. By performing factorial design, there was 1.3 fold (33%) increases in cyanide degradation.