Awards Nomination 20+ Million Readerbase
Indexed In
  • Academic Journals Database
  • Genamics JournalSeek
  • Academic Keys
  • JournalTOCs
  • China National Knowledge Infrastructure (CNKI)
  • Scimago
  • Access to Global Online Research in Agriculture (AGORA)
  • Electronic Journals Library
  • RefSeek
  • Directory of Research Journal Indexing (DRJI)
  • Hamdard University
  • EBSCO A-Z
  • OCLC- WorldCat
  • SWB online catalog
  • Virtual Library of Biology (vifabio)
  • Publons
  • MIAR
  • University Grants Commission
  • Geneva Foundation for Medical Education and Research
  • Euro Pub
  • Google Scholar
Share This Page
Journal Flyer
Flyer image

Abstract

Bioconversion of Commercial and Waste Glycerol into Value-Added Polyhydroxyalkanoates by Bacterial Strains

Joao Snoei de Castro, Luong Dang Nguyen and Jukka Seppala

The industrial conversion of renewable resources into bio-based materials has been increasingly receiving attention from an economic and, in particular, an environmental point of view. Among these bioresources, glycerol represents one of the most important base materials for the manufacturing of bulk and higher-valued products. This is mainly based on the increasing amounts of waste glycerol due to the rising production of biodiesel and other oleochemicals, as well as on the applicability of glycerol as a water-soluble carbon source for a wide range of microbial productions. Polyhydroxyalkanoates (PHAs) are biodegradable and environmentally friendly biopolymers, and the major contributor to PHA production is the substrate cost, therefore it is desirable to produce PHA from waste residues like biodiesel byproducts. Since soil ecosystems have a rich, but still insufficiently studied microbial flora, the ability of bacteria isolated from Finnish soils and sediments were investigated for the production of valueadded materials such as Polyhydroxyalkanoates based on pure and waste glycerol as carbon source. 1 out of 40 isolated strains was selected for further studies based on ability to produce PHA on mineral medium and identified as Halomonas sp SA8 with up to 56% of Polyhydroxyalkanoate accumulation. The produced biopolymer was recovered and identified as PHB homopolymer.