Awards Nomination 20+ Million Readerbase
Indexed In
  • Academic Journals Database
  • Genamics JournalSeek
  • Academic Keys
  • JournalTOCs
  • China National Knowledge Infrastructure (CNKI)
  • Scimago
  • Access to Global Online Research in Agriculture (AGORA)
  • Electronic Journals Library
  • RefSeek
  • Directory of Research Journal Indexing (DRJI)
  • Hamdard University
  • EBSCO A-Z
  • OCLC- WorldCat
  • SWB online catalog
  • Virtual Library of Biology (vifabio)
  • Publons
  • MIAR
  • University Grants Commission
  • Geneva Foundation for Medical Education and Research
  • Euro Pub
  • Google Scholar
Share This Page
Journal Flyer
Flyer image

Abstract

A Holistic In Silico Approach to Find Novel Inhibitors for Erbb1 and Erbb2 Kinases

Jian-Bin Hu, Ming-Jun Dong and Jun Zhang

Lung cancer is the primary cause of cancer deaths worldwide. The two major forms of lung cancer are nonsmall cell lung cancer and small cell lung cancer, which account for 85% and 15% of all lung cancers, respectively. There are around 26 genes which are involved in most of the lung cancers, among which ErbB1 and ErbB2 are the most prominent. Combined chemotherapy is used to cure cancer, which increases the side-effects, and the drugs available also show severe adverse reactions. Thus, there is a dire need for the search of novel inhibitors with fewer side-effects. Molecules obtained from natural sources have fewer side-effects. Therefore, the current study focuses on finding a common inhibitor from available natural products and FDA approved drugs, which bind with both ErbB1 and ErbB2. A variety of approaches have been adopted in this study, including sequence and structure analysis, 3D pharmacophore, docking studies, ADME prediction, and toxicity prediction. An in the silicon study confirmed the five phytochemicals Hyoscyamine, Cannabis F, Cochinchinenene D, Cannabis E, and Heliotropamide and five FDA approved drugs Fesoterodine, Antrafenine, Fluspirilene, Posaconazole, and Iloprost to be potential inhibitors of both ErbB1 and ErbB2, which need to be confirmed through in vivo studies.